0x5C 计数类DP
cf 559C 考虑到黑色的格子很少,那么我把(1,1)变成黑色,然后按每个黑色格子接近终点的程度排序,计算黑色格子不经过另一个黑色格子到达终点的方案,对于当前的格子,要减去在它右下角的所有方案数(注意不是f值)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL mod=1e9+;
LL MOD(LL x){return (x%mod+mod)%mod;} LL jc[],inv[];
LL quick_pow(LL A,LL p)
{
LL ret=;
while(p!=)
{
if(p%==)ret=(ret*A)%mod;
A=(A*A)%mod;p/=;
}
return ret;
}
LL getC(int n,int m){return jc[m]*inv[m-n]%mod*inv[n]%mod;} struct node{int x,y;}a[];
bool cmp(node n1,node n2){return n1.x+n1.y>n2.x+n2.y;}
LL f[];
int main()
{
jc[]=,inv[]=;for(int i=;i<=;i++)jc[i]=(jc[i-]*i)%mod,inv[i]=quick_pow(jc[i],mod-);
int n,m,K;
scanf("%d%d%d",&n,&m,&K);
for(int i=;i<=K;i++)
scanf("%d%d",&a[i].x,&a[i].y);
a[++K].x=,a[K].y=;
sort(a+,a+K+,cmp); for(int i=;i<=K;i++)
{
f[i]=getC(n-a[i].x,(n+m)-(a[i].x+a[i].y));
for(int j=;j<i;j++)
if(a[i].x<=a[j].x&&a[i].y<=a[j].y)
{
f[i]=MOD( f[i]-MOD(f[j]*getC(a[j].x-a[i].x,(a[j].x+a[j].y)-(a[i].x+a[i].y))) );
}
}
printf("%I64d\n",f[K]);
return ;
}
cf 559C
poj1737 口胡一波题解,我们知道n个点的无向图个数有2^(n*(n-1)/2)个,那么就去算不联通的,假设存在有一个包括点1的块大小为k,剩下的就是n-k个点的无向图个数了。
poj1037 其实可以借鉴一下康托展开的思想的。。。对于当前位应该选取最大的那个剩下位方案数少于m的,那么方案数就要用DP维护了。设f[i][j][k]表示枚举到第几位,选的是当前排第j的,是高位还是低位。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL f[][][]; void initf()
{
f[][][]=f[][][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
{
for(int k=j;k<=i-;k++)f[i][j][]+=f[i-][k][];
for(int k=;k<=j-;k++)f[i][j][]+=f[i-][k][];
}
} bool v[];
int main()
{
initf(); int T;
scanf("%d",&T);
while(T--)
{
int n;LL m;
scanf("%d%lld",&n,&m);
memset(v,false,sizeof(v));
int x,k;
for(int j=;j<=n;j++)
{
if(f[n][j][]>=m){x=j,k=;break;}
else m-=f[n][j][]; if(f[n][j][]>=m){x=j,k=;break;}
else m-=f[n][j][];
}
v[x]=true;printf("%d",x);
for(int i=;i<=n;i++)
{
k^=; int j=;
for(int y=;y<=n;y++)
{
if(v[y]==true)continue;
j++; if((k==&&y<x)||(k==&&y>x))
{
if(f[n-i+][j][k]>=m){x=y;break;}
else m-=f[n-i+][j][k];
}
}
v[x]=true;printf(" %d",x);
}
printf("\n");
}
return ;
}
poj1037
0x5C 计数类DP的更多相关文章
- 动态规划——区间DP,计数类DP,数位统计DP
本博客部分内容参考:<算法竞赛进阶指南> 一.区间DP 划重点: 以前所学过的线性DP一般从初始状态开始,沿着阶段的扩张向某个方向递推,直至计算出目标状态. 区间DP也属于线性DP的一种, ...
- SDOI2010代码拍卖会 (计数类DP)
P2481 SDOI2010代码拍卖会 $ solution: $ 这道题调了好久好久,久到都要放弃了.洛谷的第五个点是真的强,简简单单一个1,调了快4个小时! 这道题第一眼怎么都是数位DP,奈何数据 ...
- CH5E26 扑克牌 (计数类DP)
$ CH~5E26~\times ~ $ 扑克牌: (计数类DP) $ solution: $ 唉,计数类DP总是这么有套路,就是想不到. 这道题我们首先可以发现牌的花色没有价值,只需要知道每种牌有 ...
- $Poj1737\ Connected\ Graph$ 计数类$DP$
AcWing Description 求$N$个节点的无向连通图有多少个,节点有标号,编号为$1~N$. $1<=N<=50$ Sol 在计数类$DP$中,通常要把一个问题划分成若干个子问 ...
- $CF559C\ Gerald\ and\ Fiant\ Chess$ 计数类$DP$
AcWing Description 有个$H$行$W$列的棋盘,里面有$N$个黑色格子,求一个棋子由左上方格子走到右下方格子且不经过黑色格子的方案数. $1<=H,M<=1e5,1< ...
- $CH5302$ 金字塔 区间$DP$/计数类$DP$
CH Sol f[l][r]表示l到r这段区间对应的金字塔结构种数 发现是f[l][r]是可以由比它小的区间推出来的 比如已知f[l+1][k],f[k+1][r],不难想到f[l][r]+=f[l+ ...
- hackerrank【Lego Blocks】:计数类dp
题目大意: 修一个层数为n,长度为m的墙,每一层可以由长度为1.2.3.4的砖块构成. 每一层都在同一个长度处出现缝隙是方案非法的,问合法的方案数有多少种 思路: 先求出总方案,再减去所有非法的方案数 ...
- codeforces 277.5 div2 F:组合计数类dp
题目大意: 求一个 n*n的 (0,1)矩阵,每行每列都只有两个1 的方案数 且该矩阵的前m行已知 分析: 这个题跟牡丹江区域赛的D题有些类似,都是有关矩阵的行列的覆盖问题 牡丹江D是求概率,这个题是 ...
- Codeforces 9D How many trees? 【计数类DP】
Codeforces 9D How many trees? LINK 题目大意就是给你一个n和一个h 问你有多少个n个节点高度不小于h的二叉树 n和h的范围都很小 感觉有无限可能 考虑一下一个很显然的 ...
随机推荐
- 第1周---python网络爬虫规则
第一节:requests库入门 第二节:网络爬虫的"盗亦有道" 第三节:requests库的网络爬虫实例
- Nginx模块系列之auth_basic模块
1.1 介绍 ngx_http_auth_basic_module模块实现让访问着,只有输入正确的用户密码才允许访问web内容.web上的一些内容不想被其他人知道,但是又想让部分人看到.nginx的h ...
- VLC 媒体播放器
VLC 媒体播放器 VLC 媒体播放器是一个便携式. 免费.开源. 跨平台的媒体播放器. VideoLAN 项目的流式媒体服务器.分为Windows Phone版本和Android版本. 下载地址: ...
- JS HTML DOM---Document对象
Document 对象 当浏览器载入 HTML 文档, 它就会成为 document 对象. document 对象是HTML文档的根节点与所有其他节点(元素节点,文本节点,属性节点, 注释节点). ...
- influxDB---数据库操作SQL
查询 查询不能只查tag标签,一定要加上fields. 如:select val,"班组" FROM "测试表" WHERE dev = 'cs123' and ...
- MySql 的备份与恢复
1. 数据库导出 SQL 脚本 mysqldump -u 用户名 -p 密码 数据库名称>生成的脚本文件路径 示例: mysqldump -uroot -p 123 mydb1>/User ...
- js内置数据类型
JS 中分为七种内置类型,七种内置类型又分为两大类型:基本类型和对象(Object). 基本类型有六种: number , string , boolean , null , undefined , ...
- 阿里云RDS上的一些概念性记录
刚接触RDS,只能对RDS上的一些特性做一些笔记,方便记忆,以下为RDS上的内容摘录,取自官方文档 1 数据备份 可使用命令行或图形界面进行逻辑数据备份.仅限通过 RDS 管理控制台 或 OPEN A ...
- MySQL中自适应哈希索引
自适应哈希索引采用之前讨论的哈希表的方式实现,不同的是,这仅是数据库自身创建并使用的,DBA本身并不能对其进行干预.自适应哈希索引近哈希函数映射到一个哈希表中,因此对于字典类型的查找非常快速,如SEL ...
- PHPExcel实现上传excel文件导入数据库
项目中需要批量导入数据,感觉这个需求以后也会经常用,必须总结分享下: 引入jquery的第三方表单插件: <scripttype="text/javascript&qu ...