计数排序和桶排序(Java实现)
目录
比较和非比较的区别
常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置。
在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。
比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。
计数排序、基数排序、桶排序则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置。
非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。
非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。
计数排序
计数排序适用数据范围
计数排序需要占用大量空间,它仅适用于数据比较集中的情况。比如 [0100],[1000019999] 这样的数据。
过程分析
计数排序的基本思想是:对每一个输入的元素arr[i],确定小于 arr[i] 的元素个数
。
所以可以直接把 arr[i] 放到它输出数组中的位置上。假设有5个数小于 arr[i],所以 arr[i] 应该放在数组的第6个位置上。
下面给出两种实现:
算法流程(1)
需要三个数组:
待排序数组 int[] arr = new int[]{4,3,6,3,5,1};
辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
输出数组 int[] res = new int[arr.length];
1.求出待排序数组的最大值max=6, 最小值min=1
2.实例化辅助计数数组help,help数组中每个下标对应arr中的一个元素,help用来记录每个元素出现的次数
3.计算 arr 中每个元素在help中的位置 position = arr[i] - min,此时 help = [1,0,2,1,1,1]; (3出现了两次,2未出现)
4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]
public static int[] countSort1(int[] arr){
if (arr == null || arr.length == 0) {
return null;
}
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
//找出数组中的最大最小值
for(int i = 0; i < arr.length; i++){
max = Math.max(max, arr[i]);
min = Math.min(min, arr[i]);
}
int help[] = new int[max];
//找出每个数字出现的次数
for(int i = 0; i < arr.length; i++){
int mapPos = arr[i] - min;
help[mapPos]++;
}
int index = 0;
for(int i = 0; i < help.length; i++){
while(help[i]-- > 0){
arr[index++] = i+min;
}
}
return arr;
}
算法流程(2)
需要三个数组:
待排序数组 int[] arr = new int[]{4,3,6,3,5,1};
辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
输出数组 int[] res = new int[arr.length];
1.求出待排序数组的最大值max=6, 最小值min=1
2.实例化辅助计数数组help,help用来记录每个元素之前出现的元素个数
3.计算 arr 每个数字应该在排序后数组中应该处于的位置,此时 help = [1,1,4,5,6,7];
4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]
public static int[] countSort2(int[] arr){
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
//找出数组中的最大最小值
for(int i = 0; i < arr.length; i++){
max = Math.max(max, arr[i]);
min = Math.min(min, arr[i]);
}
int[] help = new int[max - min + 1];
//找出每个数字出现的次数
for(int i = 0; i < arr.length; i++){
int mapPos = arr[i] - min;
help[mapPos]++;
}
//计算每个数字应该在排序后数组中应该处于的位置
for(int i = 1; i < help.length; i++){
help[i] = help[i-1] + help[i];
}
//根据help数组进行排序
int res[] = new int[arr.length];
for(int i = 0; i < arr.length; i++){
int post = --help[arr[i] - min];
res[post] = arr[i];
}
return res;
}
桶排序
网络流传桶排序算法勘误
网络各博文中流程的桶排序算法实际上都是计数排序,并非标准的桶排序。有问题的文章:
经典排序算法 - 桶排序Bucket sort
桶排序算法
排序算法 之 桶排序
最快最简单的排序算法:桶排序
桶排序适用数据范围
桶排序可用于最大最小值相差较大的数据情况,比如[9012,19702,39867,68957,83556,102456]。
但桶排序要求数据的分布必须均匀,否则可能导致数据都集中到一个桶中。比如[104,150,123,132,20000], 这种数据会导致前4个数都集中到同一个桶中。导致桶排序失效。
过程分析
桶排序的基本思想是:把数组 arr 划分为n个大小相同子区间(桶),每个子区间各自排序,最后合并
。
计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。
1.找出待排序数组中的最大值max、最小值min
2.我们使用 动态数组ArrayList 作为桶,桶里放的元素也用 ArrayList 存储。桶的数量为(max-min)/arr.length+1
3.遍历数组 arr,计算每个元素 arr[i] 放的桶
4.每个桶各自排序
5.遍历桶数组,把排序好的元素放进输出数组
public static void bucketSort(int[] arr){
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for(int i = 0; i < arr.length; i++){
max = Math.max(max, arr[i]);
min = Math.min(min, arr[i]);
}
//桶数
int bucketNum = (max - min) / arr.length + 1;
ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);
for(int i = 0; i < bucketNum; i++){
bucketArr.add(new ArrayList<Integer>());
}
//将每个元素放入桶
for(int i = 0; i < arr.length; i++){
int num = (arr[i] - min) / (arr.length);
bucketArr.get(num).add(arr[i]);
}
//对每个桶进行排序
for(int i = 0; i < bucketArr.size(); i++){
Collections.sort(bucketArr.get(i));
}
System.out.println(bucketArr.toString());
}
计数排序和桶排序(Java实现)的更多相关文章
- 计数排序与桶排序python实现
计数排序与桶排序python实现 计数排序 计数排序原理: 找到给定序列的最小值与最大值 创建一个长度为最大值-最小值+1的数组,初始化都为0 然后遍历原序列,并为数组中索引为当前值-最小值的值+1 ...
- 计数排序与桶排序(bucket sort)
Bucket Sort is a sorting method that subdivides the given data into various buckets depending on cer ...
- 计数排序、桶排序python实现
计数排序在输入n个0到k之间的整数时,时间复杂度最好情况下为O(n+k),最坏情况下为O(n+k),平均情况为O(n+k),空间复杂度为O(n+k),计数排序是稳定的排序. 桶排序在输入N个数据有M个 ...
- 线性时间的排序算法--桶排序(以leetcode164. Maximum Gap为例讲解)
前言 在比较排序的算法中,快速排序的性能最佳,时间复杂度是O(N*logN).因此,在使用比较排序时,时间复杂度的下限就是O(N*logN).而桶排序的时间复杂度是O(N+C),因为它的实现并不是基于 ...
- 【JS面试向】选择排序、桶排序、冒泡排序和快速排序简介
新年伊始,又到了金三银四的时候了.面对前端越来越多的算法面试题,我简单的整理了一下几种比较常见的数组排序方式,分别介绍其基本原理和优劣势.(ps:才疏学浅,希望大家可以在issues下面指出问题) 选 ...
- 使用 js 实现十大排序算法: 桶排序
使用 js 实现十大排序算法: 桶排序 桶排序 refs xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可以访问!
- 排序基础之非比较的计数排序、桶排序、基数排序(Java实现)
转载请注明原文地址: http://www.cnblogs.com/ygj0930/p/6639353.html 比较和非比较排序 快速排序.归并排序.堆排序.冒泡排序等比较排序,每个数都必须和其他 ...
- 排序算法-桶排序(Java)
package com.rao.sort; import java.util.*; /** * @author Srao * @className BucketSort * @date 2019/12 ...
- Java排序算法——桶排序
文字部分为转载:http://hxraid.iteye.com/blog/647759 对N个关键字进行桶排序的时间复杂度分为两个部分: (1) 循环计算每个关键字的桶映射函数,这个时间复杂度是O(N ...
随机推荐
- 忘记Windows7登陆密码解决办法
忘记 Windows7 的登陆密码,解决这个问题的思路就是替换 system32 下的 Magnify.exe . 可以从 WindowsPE 启动,到 C:\windows\system32 下. ...
- java.sql.SQLException: ORA-01000: 超出打开游标的最大数
实际上,这个错误的原因,主要还是代码问题引起的. ora-01000: maximum open cursors exceeded. 表示已经达到一个进程打开的最大游标数. 这样的错误很容易出现 ...
- C 标准库系列之概述
基本上很多编程语言都会提供针对语言本身的一系列的标准库或者包,当然C语言同样也有提供标准库,C语言的标准库是一系列的头文件的集合:如assert.h.ctype.h.errno.h.float.h.l ...
- 【疑难杂症系列01】TypeError: alert is not a function
一.背景 话说今天在调试js的时候,碰到一个很奇怪的问题,现记录一下.当使用alert()函数弹出提示时,总是报错,你没看错,alert函数报错了. 二.详细说明 当时正在做一个关于告警的页面展示功能 ...
- js倒计时
/** * 启动,秒杀倒计时 * totalSecond:剩余秒数 * showTime(tm):回调函数,其中tm={day:"",hour:"",min:& ...
- 友盟推送 .NET (C#) 服务端 SDK rest api 调用库
友盟推送 .NET SDK rest api 介绍 该版本是基于友盟推送2.3版本封装的,网上查询了下发现没有.NET版本的调用库,官方也没有封装.NET的版本,只有python.java.php版本 ...
- Windows下搭建Wordpress博客网站
一:安装wamp Windows下的Apache+Mysql/MariaDB+Perl/PHP/Python,一组常用来搭建动态网站或者服务器的开源软件,本身都是各自独立的程序,但是因为常被放在一起使 ...
- Java基础知识点4:继承
继承是面向对象编程技术中非常重要的一个基本概念.它背后的基本思想就是:通过已有的类来创建一个新的类,这个新的类可以重用(或继承)已有的类方法:新的类也可以加入新的方法和属性. 在这里我们通过一个实例来 ...
- ChannelHandler
ChannelHandler功能介绍 ChannelHandler类似于Servlet的Filter过滤器,负责对I/O事件或者I/O操作进行拦截和处理,它可以选择性地拦截和处理自己感兴趣的事件,也可 ...
- 修改socket为keepAlive
参考文章:http://blog.csdn.net/ctthuangcheng/article/details/8596818 [root@mdw- gpadmin]# vi /etc/sysctl. ...