Seaborn 数据可视化基础

介绍

Matplotlib 是支持 Python 语言的开源绘图库,因为其支持丰富的绘图类型、简单的绘图方式以及完善的接口文档,深受 Python 工程师、科研学者、数据工程师等各类人士的喜欢。Seaborn 是以 Matplotlib 为核心的高阶绘图库,无需经过复杂的自定义即可绘制出更加漂亮的图形,非常适合用于数据可视化探索。

知识点

关联图

类别图

分布图

回归图

矩阵图

组合图

Seaborn 介绍

Matplotlib 应该是基于 Python 语言最优秀的绘图库了,但是它也有一个十分令人头疼的问题,那就是太过于复杂了。3000 多页的官方文档,上千个方法以及数万个参数,属于典型的你可以用它做任何事,但又无从下手。尤其是,当你想通过 Matplotlib 调出非常漂亮的效果时,往往会伤透脑筋,非常麻烦。

Seaborn 基于 Matplotlib 核心库进行了更高阶的 API 封装,可以让你轻松地画出更漂亮的图形。Seaborn 的漂亮主要体现在配色更加舒服、以及图形元素的样式更加细腻,下面是 Seaborn 官方给出的参考图。

Seaborn 具有如下特点:

内置数个经过优化的样式效果。

增加调色板工具,可以很方便地为数据搭配颜色。

单变量和双变量分布绘图更为简单,可用于对数据子集相互比较。

对独立变量和相关变量进行回归拟合和可视化更加便捷。

对数据矩阵进行可视化,并使用聚类算法进行分析。

基于时间序列的绘制和统计功能,更加灵活的不确定度估计。

基于网格绘制出更加复杂的图像集合。

除此之外, Seaborn 对 Matplotlib 和 Pandas 的数据结构高度兼容 ,非常适合作为数据挖掘过程中的可视化工具。

快速优化图形

当我们使用 Matplotlib 绘图时,默认的图像样式算不上美观。此时,就可以使用 Seaborn 完成快速优化。下面,我们先使用 Matplotlib 绘制一张简单的图像。

教学代码:

import matplotlib.pyplot as plt
%matplotlib inline x = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
y_bar = [3, 4, 6, 8, 9, 10, 9, 11, 7, 8]
y_line = [2, 3, 5, 7, 8, 9, 8, 10, 6, 7] plt.bar(x, y_bar)
plt.plot(x, y_line, '-o', color='y')

copy

动手练习|如果你对课程所使用的实验楼 Notebook 在线环境并不熟悉,可以先学习 使用指南课程。

copy

使用 Seaborn 完成图像快速优化的方法非常简单。只需要将 Seaborn 提供的样式声明代码 sns.set() 放置在绘图前即可。

import seaborn as sns

sns.set()  # 声明使用 Seaborn 样式

plt.bar(x, y_bar)
plt.plot(x, y_line, '-o', color='y')

copy

copy

我们可以发现,相比于 Matplotlib 默认的纯白色背景,Seaborn 默认的浅灰色网格背景看起来的确要细腻舒适一些。而柱状图的色调、坐标轴的字体大小也都有一些变化。

sns.set() 的默认参数为:

sns.set(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=False, rc=None)

copy

其中:

context='' 参数控制着默认的画幅大小,分别有 {paper, notebook, talk, poster} 四个值。其中,poster > talk > notebook > paper。

style='' 参数控制默认样式,分别有 {darkgrid, whitegrid, dark, white, ticks},你可以自行更改查看它们之间的不同。

palette='' 参数为预设的调色板。分别有 {deep, muted, bright, pastel, dark, colorblind} 等,你可以自行更改查看它们之间的不同。

剩下的 font='' 用于设置字体,font_scale= 设置字体大小,color_codes= 不使用调色板而采用先前的 'r' 等色彩缩写。

Seaborn 绘图 API

Seaborn 一共拥有 50 多个 API 类,相比于 Matplotlib 数千个的规模,可以算作是短小精悍了。其中,根据图形的适应场景,Seaborn 的绘图方法大致分类 6 类,分别是:关联图、类别图、分布图、回归图、矩阵图和组合图。而这 6 大类下面又包含不同数量的绘图函数。

接下来,我们就通过实际数据进行演示,使用 Seaborn 绘制不同适应场景的图形。

关联图

当我们需要对数据进行关联性分析时,可能会用到 Seaborn 提供的以下几个 API。

关联性分析 介绍

relplot 绘制关系图

scatterplot 多维度分析散点图

lineplot 多维度分析线形图

relplot 是 relational plots 的缩写,其可以用于呈现数据之后的关系,主要有散点图和条形图 2 种样式。本次实验,我们使用鸢尾花数据集进行绘图探索。

在绘图之前,先熟悉一下 iris 鸢尾花数据集。数据集总共 150 行,由 5 列组成。分别代表:萼片长度、萼片宽度、花瓣长度、花瓣宽度、花的类别。其中,前四列均为数值型数据,最后一列花的分类为三种,分别是:Iris Setosa、Iris Versicolour、Iris Virginica。

iris = sns.load_dataset("iris")
iris.head()

copy

copy

此时,我们指定 xx 和 yy 的特征,默认可以绘制出散点图。

sns.relplot(x="sepal_length", y="sepal_width", data=iris)

copy

copy

但是,上图并不能看出数据类别之间的联系,如果我们加入类别特征对数据进行着色,就更好一些了。

sns.relplot(x="sepal_length", y="sepal_width", hue="species", data=iris)

copy

copy

Seaborn 的函数都有大量实用的参数,例如我们指定 style 参数可以赋予不同类别的散点不同的形状。更多的参数,希望大家通过阅读官方文档了解。

sns.relplot(x="sepal_length", y="sepal_width",
hue="species", style="species", data=iris)

copy

copy

不只是散点图,该方法还支持线形图,只需要指定 kind="line" 参数即可。线形图和散点图适用于不同类型的数据。线形态绘制时还会自动给出 95% 的置信区间。

sns.relplot(x="sepal_length", y="petal_length",
hue="species", style="species", kind="line", data=iris)

copy

copy

你会发现,上面我们一个提到了 3 个 API,分别是:relplot,scatterplot 和 lineplot。实际上,你可以把我们已经练习过的 relplot 看作是 scatterplot 和 lineplot 的结合版本。

这里就要提到 Seaborn 中的 API 层级概念,Seaborn 中的 API 分为 Figure-level 和 Axes-level 两种。relplot 就是一个 Figure-level 接口,而 scatterplot 和 lineplot 则是 Axes-level 接口。

Figure-level 和 Axes-level API 的区别在于,Axes-level 的函数可以实现与 Matplotlib 更灵活和紧密的结合,而 Figure-level 则更像是「懒人函数」,适合于快速应用。

例如上方的图,我们也可以使用 lineplot 函数绘制,你只需要取消掉 relplot 中的 kind 参数即可。

sns.lineplot(x="sepal_length", y="petal_length",
hue="species", style="species", data=iris)

copy

copy

类别图

与关联图相似,类别图的 Figure-level 接口是 catplot,其为 categorical plots 的缩写。而 catplot 实际上是如下 Axes-level 绘图 API 的集合:

分类散点图:

stripplot() (kind="strip")
swarmplot() (kind="swarm")

分类分布图:

boxplot() (kind="box")
violinplot() (kind="violin")
boxenplot() (kind="boxen")

分类估计图:

pointplot() (kind="point")
barplot() (kind="bar")
countplot() (kind="count")

下面,我们看一下 catplot 绘图效果。该方法默认是绘制 kind="strip" 散点图。

sns.catplot(x="sepal_length", y="species", data=iris)
copy
kind="swarm" 可以让散点按照 beeswarm 的方式防止重叠,可以更好地观测数据分布。 sns.catplot(x="sepal_length", y="species", kind="swarm", data=iris)

copy

同理,hue= 参数可以给图像引入另一个维度,由于 iris 数据集只有一个类别列,我们这里就不再添加 hue= 参数了。如果一个数据集有多个类别,hue= 参数就可以让数据点有更好的区分。

接下来,我们依次尝试其他几种图形的绘制效果。绘制箱线图:

sns.catplot(x="sepal_length", y="species", kind="box", data=iris)

copy

copy

绘制小提琴图:

sns.catplot(x="sepal_length", y="species", kind="violin", data=iris)

copy

copy

绘制增强箱线图:

sns.catplot(x="species", y="sepal_length", kind="boxen", data=iris)

copy

copy

绘制点线图:

sns.catplot(x="sepal_length", y="species", kind="point", data=iris)

copy

copy

绘制条形图:

sns.catplot(x="sepal_length", y="species", kind="bar", data=iris)

copy

copy

绘制计数条形图:

sns.catplot(x="species", kind="count", data=iris)

copy

copy

分布图

分布图主要是用于可视化变量的分布情况,一般分为单变量分布和多变量分布。当然这里的多变量多指二元变量,更多的变量无法绘制出直观的可视化图形。

Seaborn 提供的分布图绘制方法一般有这几个: jointplot,pairplot,distplot,kdeplot。接下来,我们依次来看一下这些绘图方法的使用。

Seaborn 快速查看单变量分布的方法是 distplot。默认情况下,该方法将会绘制直方图并拟合核密度估计图。

sns.distplot(iris["sepal_length"])

copy

copy

distplot 提供了参数来调整直方图和核密度估计图,例如设置 kde=False 则可以只绘制直方图,或者 hist=False 只绘制核密度估计图。当然,kdeplot 可以专门用于绘制核密度估计图,其效果和 distplot(hist=False) 一致,但 kdeplot 拥有更多的自定义设置。

sns.kdeplot(iris["sepal_length"])

copy

copy

jointplot 主要是用于绘制二元变量分布图。例如,我们探寻 sepal_length 和 sepal_width 二元特征变量之间的关系。

sns.jointplot(x="sepal_length", y="sepal_width", data=iris)

copy

copy

jointplot 并不是一个 Figure-level 接口,但其支持 kind= 参数指定绘制出不同样式的分布图。例如,绘制出核密度估计对比图。

sns.jointplot(x="sepal_length", y="sepal_width", data=iris, kind="kde")

copy

copy

六边形计数图:

sns.jointplot(x="sepal_length", y="sepal_width", data=iris, kind="hex")

copy

copy

回归拟合图:

sns.jointplot(x="sepal_length", y="sepal_width", data=iris, kind="reg")

copy

copy

最后要介绍的 pairplot 更加强大,其支持一次性将数据集中的特征变量两两对比绘图。默认情况下,对角线上是单变量分布图,而其他则是二元变量分布图。

sns.pairplot(iris)

copy

copy

此时,我们引入第三维度 hue="species" 会更加直观。

sns.pairplot(iris, hue="species")

copy

copy

回归图

接下来,我们继续介绍回归图,回归图的绘制函数主要有:lmplot 和 regplot。

regplot 绘制回归图时,只需要指定自变量和因变量即可,regplot 会自动完成线性回归拟合。

sns.regplot(x="sepal_length", y="sepal_width", data=iris)

copy

copy

lmplot 同样是用于绘制回归图,但 lmplot 支持引入第三维度进行对比,例如我们设置 hue="species"。

sns.lmplot(x="sepal_length", y="sepal_width", hue="species", data=iris)

copy

copy

矩阵图

矩阵图中最常用的就只有 2 个,分别是:heatmap 和 clustermap。

意如其名,heatmap 主要用于绘制热力图。

import numpy as np

sns.heatmap(np.random.rand(10, 10))

copy

copy

热力图在某些场景下非常实用,例如绘制出变量相关性系数热力图。

除此之外,clustermap 支持绘制 层次聚类 结构图。如下所示,我们先去掉原数据集中最后一个目标列,传入特征数据即可。当然,你需要对层次聚类有所了解,否则很难看明白图像表述的含义。

iris.pop("species")
sns.clustermap(iris)

copy

copy

如果你浏览官方文档,就会发现 Seaborn 中还存在大量已大些字母开始的类,例如 JointGrid,PairGrid 等。实际上这些类只是其对应小写字母的函数 jointplot,pairplot 的进一步封装。当然,二者可能稍有不同,但并没有本质的区别。

除此之外, Seaborn 官方文档 中还有关于 样式控制 和 色彩自定义 等一些辅助组件的介绍。对于这些 API 的应用没有太大的难点,重点需要勤于练习。

seaborn总结的更多相关文章

  1. 数据可视化(三)- Seaborn简易入门

    本文内容来源:https://www.dataquest.io/mission/133/creating-compelling-visualizations 本文数据来源:http://www.cdc ...

  2. Python可视化:Seaborn库热力图使用进阶

    前言 在日常工作中,经常可以见到各种各种精美的热力图,热力图的应用非常广泛,下面一起来学习下Python的Seaborn库中热力图(heatmap)如何来进行使用. 本次运行的环境为: windows ...

  3. Python - Seaborn可视化:图形个性化设置的几个小技巧

    1 概述 在可视化过程中,经常会对默认的制图效果不满意,希望能个性化进行各种设置. 本文通过一个简单的示例,来介绍seaborn可视化过程中的个性化设置.包括常用的设置,如: 设置图表显示颜色 设置图 ...

  4. seaborn使用(绘图函数)

    seaborn使用(绘图函数) 数据集分布的可视化 分类数据的绘图 线性关系可视化 一.数据集分布的可视化 distplot kdeplot rugplot 1.distplot() 灵活的绘制单变量 ...

  5. seaborn使用(样式管理)

    seaborn使用(样式管理) Seaborn是一个在Python中制作具有吸引力和丰富信息的统计图形的库.它建立在matplotlib之上,并与PyData堆栈紧密集成,包括支持scipy和pand ...

  6. Matplotlib Toolkits:python高级绘图库seaborn

    http://blog.csdn.net/pipisorry/article/details/49515745 Seaborn介绍 seaborn (Not distributed with matp ...

  7. 使用seaborn探索泰坦尼克号上乘客能否获救

    titanic数据集是个著名的数据集.kaggle上的titanic乘客生还率预测比赛是一个很好的入门机器学习的比赛. 数据集下载可以去https://www.kaggle.com/c/titanic ...

  8. seaborn库

      首先找到Anaconda Prompt命令行,下载seaborn库 ,命令  pip install seaborn 1.风格设置 import seaborn as sns import num ...

  9. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  10. 好用的函数,assert,random.sample,seaborn tsplot, tensorflow.python.platform flags 等,持续更新

    python 中好用的函数,random.sample等,持续更新 random.sample random.sample的函数原型为:random.sample(sequence, k),从指定序列 ...

随机推荐

  1. 一起学Vue之入门篇

    概述 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手,还 ...

  2. 使用ASP.NET Core 3.x 构建 RESTful API - 3.4 内容协商

    现在,当谈论起 RESTful Web API 的时候,人们总会想到 JSON.但是实际上,JSON 和 RESTful API 没有半毛钱关系,只不过 JSON 恰好是RESTful API 结果的 ...

  3. 对JDK动态代理的模拟实现

    对JDK动态代理的模拟 动态代理在JDK中的实现: IProducer proxyProduec = (IProducer)Proxy.newProxyInstance(producer.getCla ...

  4. iOS----------证书的制作

    https://developer.umeng.com/docs/66632/detail/66748#createappid Certificates-> 卫生许可证 identifiers ...

  5. Navicat Premium从远程Mysql数据库复制到本地数据库的方法

    之前做在本地测试总是先去现在下一份数据库的sql,然后再在本地建一个相同的,导入sql.然后觉得有点麻烦,现在发现了一个直接远程直接复制一份到本地的方法 工具:Navicat Premium 1.先连 ...

  6. mysql与python的交互

    mysql是一种关系型数据库,是为了表示事物与事物之间的关系,本身存于数据库中的内容意义并不大,所以广泛应用于编程语言中,python中九含有与MySQL交互的模块 pymysql 编程对mysql的 ...

  7. 关于使用DB2数据库的项目后台报-420错误码的问题

    ###  Error querying database.  Cause: com.ibm.db2.jcc.am.SqlDataException: DB2 SQL Error: SQLCODE=-4 ...

  8. SpringBoot FatJar启动原理

    目录 SpringBoot FatJar启动原理 背景 储备知识 URLStreamHandler Archive 打包 SpringBoot启动 扩展 SpringBoot FatJar启动原理 背 ...

  9. Android组件体系之Service解析

    一.调用方式    1.启动服务    只启动一个服务,不进行通信,包括startService.startForegroundService两种调用方式.第二种方式适用于后台应用启动前台服务,在启动 ...

  10. vue项目 npm run dev在Linux 持久运行

    touch run.dev.logchmod u+w run.dev.log 记录日志文件 nohup npm run dev > run.dev.log 2>run.dev.log &a ...