PSTAT 115 Homework4 课业解析
PSTAT 115 Homework4 课业解析
题意:
蒙特卡洛采样之拒绝采样
解析:
给定一个概率分布p(z)=p~(z)/Zp,p~(z)已知,Zp为归一化常数,为未知数。对该分布进行拒绝采样,我们引入一个简单地参考分布,记作q(x),q(x)分布的采样是易于实现的,比如均匀分布。再引入一个常数k,满足kq(z)>p~(z)。每次采样中首先从q(z)采样一个数值z0,然后在区间[0,kq(z0)]进行均匀采样,得到u0。如果u0<p~(z0),则保留该采样值,否则丢弃该采样值。最后得到的数据就是一个对该分布的近似采样。为了提高接受效率,防止舍弃过多的采样值而导致采样效率低下,k值应该满足在kq(z)>p~(z)的基础上尽可能小。
涉及知识点:
拒绝采样
更多可+薇❤讨论:Rainbow890722
Homework 4
PSTAT 115, Fall 2019
Due on November 3, 2019 at 11:59 pm
Note: If you are working with a partner, please submit only one homework per group with both names
and whether you are taking the course for graduate credit or not. Submit your Rmarkdown (.Rmd) and the
compiled pdf on Gauchospace.
1. Rejection Sampling the Beta distribution. Assume we did not have access to the rbeta function for
sampling from a Beta, but we were able to evaluate the density, dbeta. This is a very common setting
in Bayesian statistics, since we can always evaluate the (proportional) posterior density p(θ | y) ∝ p(y |
θ)p(θ) but we don’t have immediate access to a method for sampling from this distribution.
(a) Let p(x) be a Beta(3, 9) density, q1(x) a Uniform(0, 1) density, and q2(x) a Normal(µ = 0.25, σ =
0.15) density.
(b) Use rejection sampling to sample from p(x) by proposing samples from q1(x). To do so, first find
M1 = max
x
p(x)/q1(x) using the optimize function and set lower=0, upper=1, and maximum =
TRUE (since we are maximizing not minimizing, the default). M will be the value in the objective
argument returned by optimize (maximum tells us where the maximum occurs, but not what height
it achieves). Propose 10000 samples and keep only the accepted samples.
(c) Use rejection sampling to sample from p(x) by proposing samples from q2(x). To do this you
need to find M2 = max
x
p(x)/q2(x) as above. Propose 10000 samples and keep only the accepted
samples.
(d) Plot the p(x), M1q1(x) and M2q2(x) all on the same plot and verify visually that the scaled
proposal densities “envelope” the target, p(x). Set the xlimits of the plot from 0 to 1. Use different
color lines for the various densities so are clearly distinguishable.
(e) Which rejection sampler had the higher rejection rate? Why does this make sense given the plot
from the previous part? This means when proposing 10000 samples from each proposal, the Monte
Carlo error of our approximation will be higher when proposing from ____ (choose q1 or q2).
(f) Report the variance of Beta(3, 9) distribution by computing the variance of the beta samples. How
does this compare to the theoretical variance (refer to the probability cheatsheet).
2. Interval estimation with rejection sampling.
(a) Use rejection sampling to sample from the following density:
p(x) = 1
4
|sin(x)| × I{x ∈ [0, 2π]}
Use a proposal density which is uniform from 0 to 2π and generate at least 1000 true samples from
p(x). Compute and report the Monte Carlo estimate of the upper and lower bound for the 50%
quantile interval using the quantile function on your samples. Compare this to the 50% HPD
region calculated on the samples. What are the bounds on the HPD region? Report the length of
the quantile interval and the total length of the HPD region. What explains the difference? Hint:
to compute the HPD use the hdi function from the HDInterval package. As the first argument
pass in density(samples), where samples is the name of your vector of true samples from the
density. Set the allowSplit argument to true and use the credMass argument to set the total
probability mass in the HPD region to 50%.
(b) Plot p(x) using the curve function (base plotting) or stat_function (ggplot). Add lines corresponding to the intervals / probability regions computed in the previous part to your plot using
1
them segments function (base plotting) or geom_segements (ggplot). To ensure that the lines
don’t overlap visually, for the HPD region set the y-value of the segment to 0 and for the quantile
interval set the y-value to to 0.01. Make the segments for HPD region and the segment for quantile
interval different colors. Report the length of the quantile interval and the total length of the HPD
region, verifying that indeed the HPD region is smaller.
PSTAT 115 Homework4 课业解析的更多相关文章
- android中使用DisplayMetrics获取屏幕参数
--关于Density int android.graphics.Bitmap.getDensity(),返回bitmap-density(密度).默认的density就是当前display-dens ...
- 【算法】(查找你附近的人) GeoHash核心原理解析及代码实现
本文地址 原文地址 分享提纲: 0. 引子 1. 感性认识GeoHash 2. GeoHash算法的步骤 3. GeoHash Base32编码长度与精度 4. GeoHash算法 5. 使用注意点( ...
- CSharpGL(9)解析OBJ文件并用CSharpGL渲染
CSharpGL(9)解析OBJ文件并用CSharpGL渲染 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码中包含10多个独立的Demo ...
- Sharepoint学习笔记—习题系列--70-576习题解析 -(Q112-Q115)
Question 112 You are designing a public-facing SharePoint 2010 Web site for an elementary school th ...
- 【Jsoup网页解析】
下载链接:http://jsoup.org/download 一.普通的请求方式(不带有cookie) 使用举例: 第一步: Connection conn=Jsoup.connect(url); 第 ...
- Java集合---Array类源码解析
Java集合---Array类源码解析 ---转自:牛奶.不加糖 一.Arrays.sort()数组排序 Java Arrays中提供了对所有类型的排序.其中主要分为Prim ...
- 书籍推荐《以C语言解析电脑》
这本书要想买到,在大陆看起来比较难,理出个目录,看个大概: 另外在这个地方可以预览前20页:http://openebook.hyread.com.tw/ebookservice/hyviewer/o ...
- 深度解析SDN——利益、战略、技术、实践(实战派专家力作,业内众多专家推荐)
深度解析SDN——利益.战略.技术.实践(实战派专家力作,业内众多专家推荐) 张卫峰 编 ISBN 978-7-121-21821-7 2013年11月出版 定价:59.00元 232页 16开 ...
- 115个Java面试题和答案——终极列表(下)
第一篇讨论了面向对象编程和它的特点,关于Java和它的功能的常见问题,Java的集合类,垃圾收集器,本章主要讨论异常处理,Java小应用程序,Swing,JDBC,远程方法调用(RMI),Servle ...
随机推荐
- 2019-2020-1 20199303 《Linux内核原理分析》 第一周作业
2019-2020-1 20199303 <Linux内核原理分析> 第一周作业 1. 环境准备 在众多的Linux发行版中,Ubuntu,小红帽还有类Unix系统的BSD系统,我选择了目 ...
- layui-table 对表格数据进行处理之后的排序问题
使用layui table过程中,将某一列的数据格式进行转换,或者将0/1状态改为是/否,或者将数字改为星星评分显示的时候都会遇到一个问题,我的表格数据转换成其他形式,同时设置了sort:true,此 ...
- java工作错误总结
1.访问接口出现以下错误 com.alibaba.dubbo.rpc.RpcException: Forbid consumer 192.168.200.126 access service com. ...
- Java中的static(1)【持续更新】——关于Eclipse的No enclosing instance of type ... 错误的理解和改正
No enclosing instance of type SomeClass is accessible. Must qualify the allocation with an enclosing ...
- ArcGIS Server10.1 动态图层服务
动态图层的应用场景: 1 改变现有图层:符号,渲染方式和版本,这些都可以通过客户端请求的时候给定相应的参数来进行设置,从而来达到轻易改变地图的效果. 2 添加地图服务中没有的图层 添加的数据可以是矢量 ...
- 怎样实现给DEDE5.7的栏目增加栏目图片
前两天用DEDE做二次开发的时候,遇到一个问题,领导让给每个栏目增加一个栏目图片的功能,网上找了些东西,结合自己实际做的时候的方法,下面详细描述下具体的实现方式(只测试了V5.7版本,对低版本是否适用 ...
- python Django中的cookie和session
目录 Cookie 1.1获取Cookie 1.2设置Cookie Session 1.数据库Session 2.缓存Session 3.文件Session 4.缓存+数据库Session Cooki ...
- Scala 异常处理
Scala 异常处理: parseURL("www.baidu.com") 会返回一个 Success[URL] ,包含了解析后的网址, 反之 parseULR("www ...
- Java8 Stream性能如何及评测工具推荐
作为技术人员,学习新知识是基本功课.有些知识是不得不学,有些知识是学了之后如虎添翼,Java8的Stream就是兼具两者的知识.不学看不懂,学了写起代码来如虎添翼. 在上篇<Java8 Stre ...
- ActiveMQ学习总结------实战操作(上)02
相信大家通过上一篇博文已经对ActiveMQ有了一个大致的概念了, 那么本篇博文将带领大家一步一步去实战操作我们的ActiveMQ 本篇主要内容: 1.ActiveMQ术语及API介绍 2.Activ ...