hihocoder 数论二·Eular质数筛法
数论二·Eular质数筛法
描述
小Ho:小Hi,上次我学会了如何检测一个数是否是质数。于是我又有了一个新的问题,我如何去快速得求解[1,N]这个区间内素数的个数呢?
小Hi:你自己有什么想法么?
小Ho:有!我一开始的想法是,自然我们已经知道了如何快速判定一个数是否是质数,那么我就直接将[1,N]之间每一个数判定一次,就可以得到结果。但我发现这个方法太笨了。
小Hi:确实呢,虽然我们已经通过快速素数检测将每一次判定的时间复杂度降低,但是N个数字的话,总的时间复杂度依旧很高。
小Ho:是的,所以后来我改变了我的算法。我发现如果一个数p是质数的话,那么它的倍数一定都是质数。所以我建立了一个布尔类型的数组isPrime,初始化都为true。我从2开始枚举,当我找到一个isPrime[p]仍然为true时,可以确定p一定是一个质数。接着我再将N以内所有p的倍数全部设定为isPrime[p*i]=false。
写成伪代码为:
isPrime[] = true
primeCount = 0
For i = 2 .. N
If isPrime[i] Then
primeCount = primeCount + 1
multiple = 2
While (i * multiple ≤ N)
isPrime[i * multiple] = false
multiple = multiple + 1
End While
End If
End For
小Hi:小Ho你用的这个算法叫做Eratosthenes筛法,是一种非常古老的质数筛选算法。其时间复杂度为O(n log log n)。但是这个算法有一个冗余的地方:比如合数10,在枚举2的时候我们判定了一次,在枚举5的时候我们又判定了一次。因此使得其时间复杂度比O(n)要高。
小Ho:那有没有什么办法可以避免啊?
小Hi:当然有了,一个改进的方法叫做Eular筛法,其时间复杂度是O(n)的。
输入
第1行:1个正整数n,表示数字的个数,2≤n≤1,000,000。
输出
第1行:1个整数,表示从1到n中质数的个数
素数筛模板不解释。
代码:
#define ll long long
#include<algorithm>
#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<queue>
#include<ctime>
#include<cmath>
#include<stack>
#include<map>
#include<set>
using namespace std;
const int MAXN=;
int su[MAXN];
bool shi[MAXN]; int shai(int n){
int p=;
memset(shi,,sizeof(shi));
shi[]=shi[]=;
for(int i=;i<=n;i++){
if(shi[i]){
su[++p]=i;
for(int j=*i;j<=n;j+=i)
shi[j]=;
}
}
return p;
} int main(){
int n;scanf("%d",&n);
printf("%d",shai(n));
}
hihocoder 数论二·Eular质数筛法的更多相关文章
- 【hihocoder 1295】Eular质数筛法
[题目链接]:http://hihocoder.com/problemset/problem/1295 [题意] [题解] 可以在O(N)的复杂度内求出1..N里面的所有素数; 当然受空间限制,N可能 ...
- Eular质数筛法
小Hi:我们可以知道,任意一个正整数k,若k≥2,则k可以表示成若干个质数相乘的形式.Eratosthenes筛法中,在枚举k的每一个质因子时,我们都计算了一次k,从而造成了冗余.因此在改进算法中,只 ...
- (数论 欧拉筛法)51NOD 1181 质数中的质数(质数筛法)
如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用 ...
- 51nod 1181 质数中的质数(质数筛法)
题目链接:51nod 1181 质数中的质数(质数筛法) #include<cstdio> #include<cmath> #include<cstring> #i ...
- 51 nod 1181 质数中的质数(质数筛法)
1181 质数中的质数(质数筛法) 如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的 ...
- [51nod 1181] 质数中的质数 - 筛法
如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用 ...
- hihocode 第九十二周 数论一·Miller-Rabin质数测试
题目链接 检测n是否为素数,数据范围为2 <= n <= 10^18; 思路:Miller_Rabin素数检测模板题,原理:在Fetmat定理的基础之上,再利用二次探测定理: 对于任意的正 ...
- 【hihocoder 1287】 数论一·Miller-Rabin质数测试
[题目链接]:http://hihocoder.com/problemset/problem/1287 [题意] [题解] 取的底数必须是小于等于n-1的; 那12个数字能通过2^64以内的所有数字; ...
- hihoCoder 数论五·欧拉函数
题目1 : 数论五·欧拉函数 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho有时候会用密码写信来互相联系,他们用了一个很大的数当做密钥.小Hi和小Ho约定 ...
随机推荐
- Python作业本——第5章 字典和结构化数据
习题 1. {} 2. {'fow': 42} 3.字典是无序的 4.报错 (KeyError) 5.第一种是既搜索键又搜索值,第二种值搜索键 没有区别,in操作符检查一个值是不是字典的一 ...
- 联想thinkpad如何关闭触摸板
Tinkpad系列很多关闭触摸屏的功能的方法都是没有的!!!比如说1.Fn+F6,或者Fn+某个按键...直接关闭没用比如说2.控制面板,鼠标/键盘,找到触摸开关...间接关闭没用比如说3.我的电脑, ...
- hadoop snapshot 备份恢复 .
1.允许创建快照 首先,在你想要进行备份的文件夹下面 执行命令,允许该文件夹创建快照 hdfs dfsadmin -allowSnapshot <path> 例如:hdfs dfsadmi ...
- PLC与上位机的socket通讯——上位机C#程序(二)
C#的网口通信 一.命令行 客户端程序:using System;using System.Collections.Generic;using System.Linq;using System.Tex ...
- java必学技能
一:系统架构师是一个最终确认和评估系统需求,给出开发规范,搭建系统实现的核心构架,并澄清技术细节.扫清主要难点的技术人员.主要着眼于系统的“技术实现”.因此他/她应该是特定的开发平台.语言.工具的大师 ...
- Elastic Stack 笔记(二)Elasticsearch5.6 安装 IK 分词器和 Head 插件
博客地址:http://www.moonxy.com 一.前言 Elasticsearch 作为开源搜索引擎服务器,其核心功能在于索引和搜索数据.索引是把文档写入 Elasticsearch 的过程, ...
- XPath匹配含有指定文本的标签---contains的用法
1.标签中只包含文字 <div> <ul id="side-menu"> <li class="active"> <a ...
- 06: RGB、YUV和HSV颜色空间模型
RGBA是代表Red(红色)Green(绿色)Blue(蓝色)和Alpha的色彩空间 YUV:Y"表示明亮度(Luminance或Luma),也就是灰阶值:而"U"和&q ...
- Mac 安装python 3.*新版本的详细步骤
Mac 系统自带python,不过自带的python版本都是2.*版本.虽然不影响老版本项目的运行, 但是python最新的3.*版本的一些语法与2.*版本并不相同,我们不论是学习还是使用,当然用最新 ...
- 使用Python3.6的标准GUI库tkinter快速创建GUI应用程序
Python 提供了多个图形开发界面的库,几个常用 Python GUI 库如下: Tkinter: Tkinter 模块(Tk 接口)是 Python 的标准 Tk GUI 工具包的接口 .Tk 和 ...