《数据挖掘导论》实验课——实验四、数据挖掘之KNN,Naive Bayes
实验四、数据挖掘之KNN,Naive Bayes
一、实验目的
1. 掌握KNN的原理
2. 掌握Naive Bayes的原理
3. 学会利用KNN与Navie Bayes解决分类问题
二、实验工具
1. Anaconda
2. sklearn
三、实验简介
1. KNN
KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系。输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数。最后选择k个最相似数据中出现次数最多的分类作为新数据的分类。
说明:KNN没有显示的训练过程,它是“懒惰学习”的代表,它在训练阶段只是把数据保存下来,训练时间开销为0,等收到测试样本后进行处理。
2. Navie Bayes
朴素贝叶斯分类器中最核心的便是贝叶斯准则,他用如下的公式表示:
p(c|x)= \frac{p(x|c)p(c)}{p(x)}p(c∣x)=p(x)p(x∣c)p(c)
在机器学习中,朴素贝叶斯分类器是一个基于贝叶斯定理的比较简单的概率分类器,其中 naive(朴素)是指的对于模型中各个 feature(特征) 有强独立性的假设,并未将 feature 间的相关性纳入考虑中。
朴素贝叶斯分类器一个比较著名的应用是用于对垃圾邮件分类,通常用文字特征来识别垃圾邮件,是文本分类中比较常用的一种方法。朴素贝叶斯分类通过选择 token(通常是邮件中的单词)来得到垃圾邮件和非垃圾邮件间的关联,再通过贝叶斯定理来计算概率从而对邮件进行分类。
四、实验内容
1. 利用KNN对鸢尾花数据进行分类。
(1) 调用数据的方法如下:
from sklearn.datasets import load_iris iris = load_iris()# 从sklearn 数据集中获取鸢尾花数据。
(2)数据进行KNN分类
首先导入鸢尾花数据集
获取并划分数据集
声明训练并评价模型
进行样本测试
2. 利用Navie Bayes对鸢尾花数据建模
输出测试样本在各个类标记上预测概率值对应对数值,
返回测试样本映射到指定类标记上的得分(准确率).
3. 不使用sklearn中的分类方法,自己编写KNN程序(建议用python语言),并对鸢尾花数据进行分类。
4. (选做) 不使用sklearn中的分类方法,自己编写Navie Bayes程序(建议用python语言),并对鸢尾花数据进行分类。
五、实验总结(写出本次实验的收获,遇到的问题等)
本次实验自主学习探索了sklearn中GaussianNB建模和KNeighborsClassifier分类。调用封装的方法实现了模型的训练以及测试。
但是对knn理解程度不够,已经Python语言掌握不熟,未能自行实现knn程序的编写对鸢尾花进行分类,需要加强学习!
《数据挖掘导论》实验课——实验四、数据挖掘之KNN,Naive Bayes的更多相关文章
- 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...
- 《数据挖掘导论》实验课——实验七、数据挖掘之K-means聚类算法
实验七.数据挖掘之K-means聚类算法 一.实验目的 1. 理解K-means聚类算法的基本原理 2. 学会用python实现K-means算法 二.实验工具 1. Anaconda 2. skle ...
- 《数据挖掘导论》实验课——实验二、数据处理之Matplotlib
实验二.数据处理之Matplotlib 一.实验目的 1. 了解matplotlib库的基本功能 2. 掌握matplotlib库的使用方法 二.实验工具: 1. Anaconda 2. Numpy, ...
- 《数据挖掘导论》实验课——实验一、数据处理之Numpy
实验一.数据处理之Numpy 一.实验目的 1. 了解numpy库的基本功能 2. 掌握Numpy库的对数组的操作与运算 二.实验工具: 1. Anaconda 2. Numpy 三.Numpy简介 ...
- 数据挖掘入门系列教程(四)之基于scikit-lean实现决策树
目录 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理Iris 加载数据集 数据特征 训练 随机森林 调参工程师 结尾 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理 ...
- 第六周课程总结&实验报告(四)
实验报告(四) 一.实验目的 1.掌握类的继承 2.变量的继承和覆盖,方法的继承,重载和覆盖的实现 二.实验的内容 1.根据下面的要求实现圆类Circle. 圆类Circle的成员变量:radius表 ...
- 2015英特尔® 实感™ (Intel® RealSense™) 动手开发实验课
2015年英特尔® 全球实感技术动手实验课路演来到中国, 这次在中国将有北京和广州两站,包括一天的动手实验室活动 - 面向对感知计算.3D 开发和虚拟现实兴趣浓厚的开发人员.英特尔专家将会指导您如何借 ...
- #012python实验课
通过三到四周的学习Python选修课程已经学到了网络爬虫这一环节. 基础语法混乱 这是,在进行周四实验课程的时候,一直遇到的一个问题.写着写着,就往C语言的语法方向跑了,可以说之前我仅仅是对,pyth ...
- SDUT OJ 数据结构实验之图论四:迷宫探索
数据结构实验之图论四:迷宫探索 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descrip ...
随机推荐
- python sympy evalf()函数
SymPy是一个符号计算的Python库.它的目标是成为一个全功能的计算机代数系统,同时保持代码简 洁.易于理解和扩展.它完全由Python写成,不依赖于外部库.SymPy支持符号计算.高精度计算.模 ...
- ARTS-S pytorch用c++实现推理
训练的代码,以cifar为例 # -*- coding: utf-8 -*- import torch import torchvision import torchvision.transforms ...
- Python安装pIL包
PIL包名为pillow 使用命令进行安装: pip3 install pillow
- debian官网qcow2镜像修改root账号密码,开启ssh等
1.下载官网qcow2镜像文件 wget http://172.16.20.10/vmtemplate/KVM/wangrui/Debian/debian-10.2.0-openstack-amd64 ...
- 【hibernate】重写物理表名和列明
[hibernate]重写物理表名和列明 转载:https://www.cnblogs.com/yangchongxing/p/10357123.html 假设你的数据库命名有这样的需求,表都以 yc ...
- 我的 FPGA 学习历程(15)—— Verilog 的 always 语句综合
在本篇里,我们讨论 Verilog 语言的综合问题,Verilog HDL (Hardware Description Language) 中文名为硬件描述语言,而不是硬件设计语言.这个名称提醒我们是 ...
- 《Java基础知识》Java多态和动态绑定
在Java中,父类的变量可以引用父类的实例,也可以引用子类的实例. 请读者先看一段代码: public class Demo { public static void main(String[] ar ...
- idea创建Maven版的ssm项目
要使用idea创建一个maven项目,首先电脑安装maven,maven下载地址:http://maven.apache.org/download.cgi 1.打开idea,选择创建一个新项目,选择m ...
- SpringCloud-服务注册与实现-Eureka创建服务提供者(附源码下载)
场景 SpringCloud-服务注册与实现-Eureka创建服务注册中心(附源码下载): https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/deta ...
- 利用Python多线程来测试并发漏洞
需求介绍 有时候想看看Web应用在代码或者数据库层有没有加锁,比如在一些支付.兑换类的场景,通过多线程并发访问的测试方式可以得到一个结论. 步骤 1. Burp Suite安装插件 安装一个Copy ...