B. Wycieczki

题目描述

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。

输入格式

第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。
接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。
可能有重边。

输出格式

包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。

样例

样例输入

6 6 11
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3

样例输出

4

数据范围与提示

长度为1的路径有1->2,5->3,4->5。
长度为2的路径有2->3,3->4,4->5->3。
长度为3的路径有4->6,1->2->3,3->4->5,5->3->4。
长度为4的路径有5->3->4->5。

这道题时间跨度比较长了,主要是因为这道题贼难调,稍有不慎就会WA,而且这道题的测试点贼多,多到会出现2分情况,所以真的是我的签名说的,一杯茶一包纸,一份代码调成X

其实这道题还算好像,而且有思维量,主要就是要把边的矩阵拆点,然后建边,注意需点,也就是整个矩阵会扩大三倍;整个题其实就是二分(我打了一半,跑的实在是太慢了,所以换了一种方法)倍增,倍增就和求lca其实是一样的,就是换成了矩阵,不知其他神犇是怎么打的,反正我是使用结构体,但是要注意细节,整个卡了一晚上,就是因为矩阵传参没加取地址,加上就A了,有神犇知道为啥的就留言吧

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
#define LL long long
#define re register
#define F(i,a,b) for(LL i=a;i<=b;i++)
LL n,m,u,v,d,t;
long long s,k;
bool flag;
inline LL read()
{
re LL ss=;char bb=getchar();
while(bb<||bb>)bb=getchar();
while(bb>=&&bb<=)ss=(ss<<)+(ss<<)+(bb^),bb=getchar();
return ss;
}
struct Martix
{
LL x[][];
void init()
{
memset(x,,sizeof(x));
}
}mul[],tmp;
Martix bg,base,now;
void made(Martix &a,Martix &b,Martix &c)
{
flag=;
tmp.init();
F(i,,*n+)
F(l,,*n+)
{
if(!a.x[i][l])continue;
//debug(i);debug(l);
F(j,,*n+)
tmp.x[i][j]=tmp.x[i][j]+a.x[i][l]*b.x[l][j];
if(i==&&tmp.x[i][*n+]>=k)flag=;
}
c=tmp;
}
int main()
{
//freopen("cnm.txt","r",stdin);
n=read(),m=read(),k=read();
F(i,,n)
{
bg.x[][i]=;
base.x[i][i+n]=;
base.x[i+n][i+*n]=;
}
while(m--)
{
u=read(),v=read(),d=read();
base.x[u+(d-)*n][v]++;
base.x[u+(d-)*n][*n+]++;
}
base.x[*n+][*n+]=;
mul[]=base;
for(;t<=;t++)
{
if(t)
made(mul[t-],mul[t-],mul[t]);
made(bg,mul[t],now);
if(!flag||now.x[][*n+]>=k){break;}
}
t--;
if(t==&&now.x[][*n+]<k)
{
puts("-1");
return ;
}
for(LL i=t;i>=;i--)
{
made(bg,mul[i],now);
if(flag&&now.x[][*n+]<k)
{
s+=(1ll<<i);
bg=now;
}
}
printf("%lld\n",s+);
}

hhh

endl;

Wycieczki 线性代数的更多相关文章

  1. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  2. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  3. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  4. 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍

    调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...

  5. 【BZOJ】【TJOI2015】线性代数

    网络流/最小割/最大权闭合图 2333好开心,除了一开始把$500^2$算成25000……导致数组没开够RE了一发,可以算是一次AC~ 咳咳还是回归正题来说题解吧: 一拿到这道题,我就想:这是什么鬼玩 ...

  6. OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!

    OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...

  7. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  8. 线性代数-矩阵-【1】矩阵汇总 C和C++的实现

    矩阵的知识点之多足以写成一本线性代数. 在C++中,我们把矩阵封装成类.. 程序清单: Matrix.h//未完待续 #ifndef _MATRIX_H #define _MATRIX_H #incl ...

  9. 线性代数-矩阵-【2】矩阵生成 C和C++实现

    矩阵的知识点之多足以写成一本线性代数. 所以我们把矩阵的运算封装成矩阵类.以C++为主进行详解. 点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Lia ...

随机推荐

  1. docker在Mac上的下载安装

    在Mac上下载安装docker,下载链接:Stable 安装成功后启动终端,检查安装后的docker版本: yanguobindeMacBook-Pro:~ yanguobin$ docker --v ...

  2. Color Length UVALive - 5841

    题文:见网页:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sho ...

  3. Web安全之爆破中的验证码识别~

    写爆破靶场的时候发现对于爆破有验证码的有点意思~这里简单总结下我们爆破有验证码的场景中几种有效的方法~~~ 0x01 使用现成工具 这里有pkav团队的神器PKAV HTTP Fuzzer 1.5.6 ...

  4. SDL建设-三方依赖库扫描

    说明: 本文首发自 https://www.secpulse.com/archives/73373.html,转载请注明出处. 文章综述 本文主要介绍Dependency-Check工具的工作原理和使 ...

  5. [NOIp2009] luogu P1071 潜伏者

    翘课间操和体育课来水博客. 题目描述 CCF的题面贼长,但貌似除了背景以外,每句话都删不掉.不写啦,反正也是Ctrl C的. Solution 显然这是一道码农题. #include<cstdi ...

  6. std::weak_ptr

    weak_ptr 是一种不控制对象生命周期的智能指针, 它指向一个 shared_ptr 管理的对象. 进行该对象的内存管理的是那个强引用的 shared_ptr. weak_ptr只是提供了对管理对 ...

  7. StringBuffer类讲解

    package Main; import java.util.Scanner; public class Main { public static void main(String[] args) { ...

  8. Shell进阶精品课程

    课程链接 Shell精品进阶教程:理解Shell的方方面面 课程目标 系统性的掌握shell相关知识,进阶shell脚本能力,对shell各方面了然于心 适用人群 具备shell基础但想深入.系统性掌 ...

  9. django-表单之新增字段和设置css属性(四)

    要注意是模板元素 和 表单元素的对应.

  10. 一起来刷《剑指Offer》——不修改数组找出重复的数字(思路及Python实现)

    数组中重复的数字 在上一篇博客中<剑指Offer>-- 题目一:找出数组中重复的数字(Python多种方法实现)中,其实能发现这类题目的关键就是一边遍历数组一边查满足条件的元素. 然后我们 ...