hadoop2.9.0之前的版本yarn RM fairScheduler调度性能优化
对一般小公司来说 可能yarn调度能力足够了 但是对于大规模集群1000 or 2000+的话 yarn的调度性能捉襟见肘
恰好网上看到一篇很好的文章https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html
参考了YARN-5969 发现hadoop2.9.0已经修正了该issue 实测提高了调度性能
FairScheduler 调度方式有两种
心跳调度:Yarn的NodeManager会通过心跳的方式定期向ResourceManager汇报自身状态 伴随着这次rpc请求 会触发Resourcemanager 触发nodeUpdate()方法 为这个节点进行一次资源调度
持续调度:有一个固定守护线程每隔很短的时间调度 实时的资源分配,与NodeManager的心跳出发的调度相互异步并行进行
- 每次dataNode 发来心跳 时候作为一个event走下面方法
- FairScheduler 类
- @Override
- public void handle(SchedulerEvent event) {
- switch (event.getType()) {
- case NODE_ADDED:
- if (!(event instanceof NodeAddedSchedulerEvent)) {
- throw new RuntimeException("Unexpected event type: " + event);
- }
- NodeAddedSchedulerEvent nodeAddedEvent = (NodeAddedSchedulerEvent)event;
- addNode(nodeAddedEvent.getContainerReports(),
- nodeAddedEvent.getAddedRMNode());
- break;
- case NODE_REMOVED:
- if (!(event instanceof NodeRemovedSchedulerEvent)) {
- throw new RuntimeException("Unexpected event type: " + event);
- }
- NodeRemovedSchedulerEvent nodeRemovedEvent = (NodeRemovedSchedulerEvent)event;
- removeNode(nodeRemovedEvent.getRemovedRMNode());
- break;
- case NODE_UPDATE:
- if (!(event instanceof NodeUpdateSchedulerEvent)) {
- throw new RuntimeException("Unexpected event type: " + event);
- }
- NodeUpdateSchedulerEvent nodeUpdatedEvent = (NodeUpdateSchedulerEvent)event;
- nodeUpdate(nodeUpdatedEvent.getRMNode());
- break;
- case APP_ADDED:
- if (!(event instanceof AppAddedSchedulerEvent)) {
- throw new RuntimeException("Unexpected event type: " + event);
- }
- AppAddedSchedulerEvent appAddedEvent = (AppAddedSchedulerEvent) event;
每次nodeUpdate 走的都是相同的逻辑
- attemptScheduling(node) 持续调度跟心跳调度都走该方法
- // If the node is decommissioning, send an update to have the total
- // resource equal to the used resource, so no available resource to
- // schedule.
- if (nm.getState() == NodeState.DECOMMISSIONING) {
- this.rmContext
- .getDispatcher()
- .getEventHandler()
- .handle(
- new RMNodeResourceUpdateEvent(nm.getNodeID(), ResourceOption
- .newInstance(getSchedulerNode(nm.getNodeID())
- .getUsedResource(), 0)));
- }
- if (continuousSchedulingEnabled) {
- if (!completedContainers.isEmpty()) { //持续调度开启时
- attemptScheduling(node);
- }
- } else {
- attemptScheduling(node); //心跳调度
- }
- // Updating node resource utilization
- node.setAggregatedContainersUtilization(
- nm.getAggregatedContainersUtilization());
- node.setNodeUtilization(nm.getNodeUtilization());
持续调度是一个单独的守护线程
- 间隔getContinuousSchedulingSleepMs()时间运行一次continuousSchedulingAttempt方法
- /**
* Thread which attempts scheduling resources continuously,
* asynchronous to the node heartbeats.
*/
private class ContinuousSchedulingThread extends Thread {- @Override
public void run() {
while (!Thread.currentThread().isInterrupted()) {
try {
continuousSchedulingAttempt();
Thread.sleep(getContinuousSchedulingSleepMs());
} catch (InterruptedException e) {
LOG.warn("Continuous scheduling thread interrupted. Exiting.", e);
return;
}
}
}
}
之后进行一次node节点 根据资源宽松情况的排序
- void continuousSchedulingAttempt() throws InterruptedException {
- long start = getClock().getTime();
- List<NodeId> nodeIdList = new ArrayList<NodeId>(nodes.keySet());
- // Sort the nodes by space available on them, so that we offer
- // containers on emptier nodes first, facilitating an even spread. This
- // requires holding the scheduler lock, so that the space available on a
- // node doesn't change during the sort.
- synchronized (this) {
- Collections.sort(nodeIdList, nodeAvailableResourceComparator);
- }
- // iterate all nodes
- for (NodeId nodeId : nodeIdList) {
- FSSchedulerNode node = getFSSchedulerNode(nodeId);
- try {
- if (node != null && Resources.fitsIn(minimumAllocation,
- node.getAvailableResource())) {
- attemptScheduling(node);
- }
- } catch (Throwable ex) {
- LOG.error("Error while attempting scheduling for node " + node +
- ": " + ex.toString(), ex);
- if ((ex instanceof YarnRuntimeException) &&
- (ex.getCause() instanceof InterruptedException)) {
- // AsyncDispatcher translates InterruptedException to
- // YarnRuntimeException with cause InterruptedException.
- // Need to throw InterruptedException to stop schedulingThread.
- throw (InterruptedException)ex.getCause();
- }
- }
- }
依次对node遍历分配Container
- queueMgr.getRootQueue().assignContainer(node) 从root遍历树 对抽象的应用资源遍历
- boolean validReservation = false;
- FSAppAttempt reservedAppSchedulable = node.getReservedAppSchedulable();
- if (reservedAppSchedulable != null) {
- validReservation = reservedAppSchedulable.assignReservedContainer(node);
- }
- if (!validReservation) {
- // No reservation, schedule at queue which is farthest below fair share
- int assignedContainers = 0;
- Resource assignedResource = Resources.clone(Resources.none());
- Resource maxResourcesToAssign =
- Resources.multiply(node.getAvailableResource(), 0.5f);
- while (node.getReservedContainer() == null) {
- boolean assignedContainer = false;
- Resource assignment = queueMgr.getRootQueue().assignContainer(node);
- if (!assignment.equals(Resources.none())) { //判断是否分配到container
- assignedContainers++;
- assignedContainer = true;
- Resources.addTo(assignedResource, assignment);
- }
- if (!assignedContainer) { break; }
- if (!shouldContinueAssigning(assignedContainers,
- maxResourcesToAssign, assignedResource)) {
- break;
- }
- }
- 接下来在assignContainer 方法中对子队列使用特定的比较器排序这里是fairSchduler
- @Override
- public Resource assignContainer(FSSchedulerNode node) { 对于每一个服务器,对资源树进行一次递归搜索
- Resource assigned = Resources.none();
- // If this queue is over its limit, reject
- if (!assignContainerPreCheck(node)) {
- return assigned;
- }
- // Hold the write lock when sorting childQueues
- writeLock.lock();
- try {
- Collections.sort(childQueues, policy.getComparator());
- } finally {
- writeLock.unlock();
- }
对队列下的app排序
- /*
- * We are releasing the lock between the sort and iteration of the
- * "sorted" list. There could be changes to the list here:
- * 1. Add a child queue to the end of the list, this doesn't affect
- * container assignment.
- * 2. Remove a child queue, this is probably good to take care of so we
- * don't assign to a queue that is going to be removed shortly.
- */
- readLock.lock();
- try {
- for (FSQueue child : childQueues) {
- assigned = child.assignContainer(node);
- if (!Resources.equals(assigned, Resources.none())) {
- break;
- }
- }
- } finally {
- readLock.unlock();
- }
- return assigned;
- assignContainer 可能传入的是app 可能传入的是一个队列 是队列的话 进行递归 直到找到app为止(root(FSParentQueue)节点递归调用
assignContainer()
,最终将到达最终叶子节点的assignContainer()
方法,才真正开始进行分配)
优化一 : 优化队列比较器
我们在这里 关注的就是排序
hadoop2.8.4 排序类 FairSharePolicy中的 根据权重 需求的资源大小 和内存占比 进行排序 多次获取
- getResourceUsage() 产生了大量重复计算 这个方法是一个动态获取的过程(耗时)
- @Override
public int compare(Schedulable s1, Schedulable s2) {
double minShareRatio1, minShareRatio2;
double useToWeightRatio1, useToWeightRatio2;
Resource minShare1 = Resources.min(RESOURCE_CALCULATOR, null,
s1.getMinShare(), s1.getDemand());
Resource minShare2 = Resources.min(RESOURCE_CALCULATOR, null,
s2.getMinShare(), s2.getDemand());
boolean s1Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
s1.getResourceUsage(), minShare1);
boolean s2Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
s2.getResourceUsage(), minShare2);
minShareRatio1 = (double) s1.getResourceUsage().getMemorySize()
/ Resources.max(RESOURCE_CALCULATOR, null, minShare1, ONE).getMemorySize();
minShareRatio2 = (double) s2.getResourceUsage().getMemorySize()
/ Resources.max(RESOURCE_CALCULATOR, null, minShare2, ONE).getMemorySize();
useToWeightRatio1 = s1.getResourceUsage().getMemorySize() /
s1.getWeights().getWeight(ResourceType.MEMORY);
useToWeightRatio2 = s2.getResourceUsage().getMemorySize() /
s2.getWeights().getWeight(ResourceType.MEMORY);
int res = 0;
if (s1Needy && !s2Needy)
res = -1;
else if (s2Needy && !s1Needy)
res = 1;
else if (s1Needy && s2Needy)
res = (int) Math.signum(minShareRatio1 - minShareRatio2);
else
// Neither schedulable is needy
res = (int) Math.signum(useToWeightRatio1 - useToWeightRatio2);
if (res == 0) {
// Apps are tied in fairness ratio. Break the tie by submit time and job
// name to get a deterministic ordering, which is useful for unit tests.
res = (int) Math.signum(s1.getStartTime() - s2.getStartTime());
if (res == 0)
res = s1.getName().compareTo(s2.getName());
}
return res;
}
}
新版优化后如下
- @Override
- public int compare(Schedulable s1, Schedulable s2) {
- int res = compareDemand(s1, s2);
- // Pre-compute resource usages to avoid duplicate calculation
- Resource resourceUsage1 = s1.getResourceUsage();
- Resource resourceUsage2 = s2.getResourceUsage();
- if (res == 0) {
- res = compareMinShareUsage(s1, s2, resourceUsage1, resourceUsage2);
- }
- if (res == 0) {
- res = compareFairShareUsage(s1, s2, resourceUsage1, resourceUsage2);
- }
- // Break the tie by submit time
- if (res == 0) {
- res = (int) Math.signum(s1.getStartTime() - s2.getStartTime());
- }
- // Break the tie by job name
- if (res == 0) {
- res = s1.getName().compareTo(s2.getName());
- }
- return res;
- }
- private int compareDemand(Schedulable s1, Schedulable s2) {
- int res = 0;
- Resource demand1 = s1.getDemand();
- Resource demand2 = s2.getDemand();
- if (demand1.equals(Resources.none()) && Resources.greaterThan(
- RESOURCE_CALCULATOR, null, demand2, Resources.none())) {
- res = 1;
- } else if (demand2.equals(Resources.none()) && Resources.greaterThan(
- RESOURCE_CALCULATOR, null, demand1, Resources.none())) {
- res = -1;
- }
- return res;
- }
- private int compareMinShareUsage(Schedulable s1, Schedulable s2,
- Resource resourceUsage1, Resource resourceUsage2) {
- int res;
- Resource minShare1 = Resources.min(RESOURCE_CALCULATOR, null,
- s1.getMinShare(), s1.getDemand());
- Resource minShare2 = Resources.min(RESOURCE_CALCULATOR, null,
- s2.getMinShare(), s2.getDemand());
- boolean s1Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
- resourceUsage1, minShare1);
- boolean s2Needy = Resources.lessThan(RESOURCE_CALCULATOR, null,
- resourceUsage2, minShare2);
- if (s1Needy && !s2Needy) {
- res = -1;
- } else if (s2Needy && !s1Needy) {
- res = 1;
- } else if (s1Needy && s2Needy) {
- double minShareRatio1 = (double) resourceUsage1.getMemorySize() /
- Resources.max(RESOURCE_CALCULATOR, null, minShare1, ONE)
- .getMemorySize();
- double minShareRatio2 = (double) resourceUsage2.getMemorySize() /
- Resources.max(RESOURCE_CALCULATOR, null, minShare2, ONE)
- .getMemorySize();
- res = (int) Math.signum(minShareRatio1 - minShareRatio2);
- } else {
- res = 0;
- }
- return res;
- }
- /**
- * To simplify computation, use weights instead of fair shares to calculate
- * fair share usage.
- */
- private int compareFairShareUsage(Schedulable s1, Schedulable s2,
- Resource resourceUsage1, Resource resourceUsage2) {
- double weight1 = s1.getWeights().getWeight(ResourceType.MEMORY);
- double weight2 = s2.getWeights().getWeight(ResourceType.MEMORY);
- double useToWeightRatio1;
- double useToWeightRatio2;
- if (weight1 > 0.0 && weight2 > 0.0) {
- useToWeightRatio1 = resourceUsage1.getMemorySize() / weight1;
- useToWeightRatio2 = resourceUsage2.getMemorySize() / weight2;
- } else { // Either weight1 or weight2 equals to 0
- if (weight1 == weight2) {
- // If they have same weight, just compare usage
- useToWeightRatio1 = resourceUsage1.getMemorySize();
- useToWeightRatio2 = resourceUsage2.getMemorySize();
- } else {
- // By setting useToWeightRatios to negative weights, we give the
- // zero-weight one less priority, so the non-zero weight one will
- // be given slots.
- useToWeightRatio1 = -weight1;
- useToWeightRatio2 = -weight2;
- }
- }
- return (int) Math.signum(useToWeightRatio1 - useToWeightRatio2);
- }
- }
用了测试环境集群 比较了修改前后两次队列排序耗时
图中使用挫劣的方式比对 请观众凑合看吧^-^
上面红框里为 新版本 下面红框为老版本 虽然没有进行压测 但是在同样的调度任务前提下 是有说服力的 在大集群上每秒调度上千万乃至上亿次该方法时 调度优化变的明显
上线压测时 在1000队列 1500 pending任务600running任务时 调度性能提高了一倍 还是比较明显的提升的
优化二 : 优化yarn调度逻辑
思想:在大规模集群中 资源利用率表现的并不好,为了提高资源利用率,开启持续调度 然而实践发现 资源利用率是上去了但是 集群调度能力很弱 处理跟释放的container并没有提高
排查原因是心跳调度跟持续调度 走相同的synchronized 方法修饰的attemptScheduling 导致竞争锁 分配和释放都变的缓慢 且队列排序分配 在集群pending任务巨多时异常缓慢
优化:1,启用持续调度 禁用心跳调度
2,持续调度按批进行 间接减少队列排序造成的耗时影响
3. 释放不重要的锁 解放性能
说干就干
开启yarn的持续调度 配置如下:
- <property>
- <name>yarn.scheduler.fair.continuous-scheduling-enabled</name>
- <value>true</value>
- <discription>是否打开连续调度功能</discription>
- </property>
- <property>
持续调度 每5ms执行一次上述方法 对node依次迭代执行
- void continuousSchedulingAttempt() throws InterruptedException {
- long start = getClock().getTime();
- List<NodeId> nodeIdList = new ArrayList<NodeId>(nodes.keySet());
- // Sort the nodes by space available on them, so that we offer
- // containers on emptier nodes first, facilitating an even spread. This
- // requires holding the scheduler lock, so that the space available on a
- // node doesn't change during the sort.
- synchronized (this) {
- Collections.sort(nodeIdList, nodeAvailableResourceComparator); //对所有node 根据资源排序
- }
- // iterate all nodes
- for (NodeId nodeId : nodeIdList) { //遍历所有的node
- FSSchedulerNode node = getFSSchedulerNode(nodeId);
- try {
- if (node != null && Resources.fitsIn(minimumAllocation,
- node.getAvailableResource())) { //判断该node 上现有的资源是否大于最小配置资源单位
- attemptScheduling(node); //执行ttemptScheduling方法
- } } catch (Throwable ex) { LOG.error("Error while attempting scheduling for node " + node + ": " + ex.toString(), ex); if ((ex instanceof YarnRuntimeException) && (ex.getCause() instanceof InterruptedException)) { // AsyncDispatcher translates InterruptedException to // YarnRuntimeException with cause InterruptedException. // Need to throw InterruptedException to stop schedulingThread. throw (InterruptedException)ex.getCause(); } } }
下面看下attemptScheduling方法
- @VisibleForTesting
- synchronized void attemptScheduling(FSSchedulerNode node) {
- if (rmContext.isWorkPreservingRecoveryEnabled()
- && !rmContext.isSchedulerReadyForAllocatingContainers()) {
- return;
- }
- final NodeId nodeID = node.getNodeID();
- if (!nodes.containsKey(nodeID)) { //合法性
- // The node might have just been removed while this thread was waiting
- // on the synchronized lock before it entered this synchronized method
- LOG.info("Skipping scheduling as the node " + nodeID +
- " has been removed");
- return;
- }
- // Assign new containers...
- // 1. Check for reserved applications
- // 2. Schedule if there are no reservations
- boolean validReservation = false;
- FSAppAttempt reservedAppSchedulable = node.getReservedAppSchedulable();
- if (reservedAppSchedulable != null) {
- validReservation = reservedAppSchedulable.assignReservedContainer(node);
- }
- if (!validReservation) { //合法性判断
- // No reservation, schedule at queue which is farthest below fair share
- int assignedContainers = 0;
- Resource assignedResource = Resources.clone(Resources.none());
- Resource maxResourcesToAssign =
- Resources.multiply(node.getAvailableResource(), 0.5f); //默认使用该node最大50%的资源
- while (node.getReservedContainer() == null) {
- boolean assignedContainer = false;
- Resource assignment = queueMgr.getRootQueue().assignContainer(node); //主要方法 依次对root树 遍历直到app 对该node上分配container
- if (!assignment.equals(Resources.none())) { //分配到资源
- assignedContainers++; //分配到的container个数增1
- assignedContainer = true;
- Resources.addTo(assignedResource, assignment);
- }
- if (!assignedContainer) { break; } //未匹配到 跳出
- if (!shouldContinueAssigning(assignedContainers, //根据相关配置判断 现在分配的container个数 是否超出node上配置最大数 或node上的可用资源是否超出最小的配置资源
- maxResourcesToAssign, assignedResource)) {
- break;
- }
- }
- }
- updateRootQueueMetrics();
- }
针对上面源码 修改为如下内容:
- interface Schedulable 接口新增 方法
- /**
- * Assign list container list this node if possible, and return the amount of
- * resources assigned.
- */
- public List<Resource> assignContainers(List<FSSchedulerNode> nodes);
- @VisibleForTesting
- protected void attemptSchedulings(ArrayList<FSSchedulerNode> fsSchedulerNodeList) {
- if (rmContext.isWorkPreservingRecoveryEnabled()
- && !rmContext.isSchedulerReadyForAllocatingContainers()) {
- return;
- }
- List<FSSchedulerNode> fsSchedulerNodes = new ArrayList(); //定义个新集合 添加通过检查的node 抽象对象
- fsSchedulerNodeList.stream().forEach(node -> {
- final NodeId nodeID = node.getNodeID();
- if (nodes.containsKey(nodeID)) {
- // Assign new containers...// 1. Check for reserved applications
- // 2. Schedule if there are no reservations
- boolean validReservation = false;
- FSAppAttempt reservedAppSchedulable = node.getReservedAppSchedulable();
- if (reservedAppSchedulable != null) {
- validReservation = reservedAppSchedulable.assignReservedContainer(node);
- }
- if (!validReservation) { //通过合法检查
- if (node.getReservedContainer() == null) { //该node上 没有被某个container预留
- fsSchedulerNodes.add(node);
- }
- }
- } else {
- LOG.info("Skipping scheduling as the node " + nodeID +
- " has been removed");
- }
- });
- if (fsSchedulerNodes.isEmpty()) {
- LOG.error("Handle fsSchedulerNodes empty and return");
- return;
- }
- LOG.info("符合条件的nodes:" + fsSchedulerNodeList.size());
- List<Resource> resources = queueMgr.getRootQueue().assignContainers(fsSchedulerNodes); //传入node的集合 批量操作
- fsOpDurations.addDistributiveContainer(resources.size());
- LOG.info("本次分配的container count:" + resources.size());
- updateRootQueueMetrics();
- }
- FSParentQueue 类中 添加实现
- @Override
- public List<Resource> assignContainers(List<FSSchedulerNode> nodes) {
- List<Resource> assignedsNeed = new ArrayList<>();
- ArrayList<FSSchedulerNode> fsSchedulerNodes = new ArrayList<>();
- for (FSSchedulerNode node : nodes) {
- if (assignContainerPreCheck(node)) {
- fsSchedulerNodes.add(node);
- }
- }
- if (fsSchedulerNodes.isEmpty()) {
- LOG.info("Nodes is empty, skip this assign around");
- return assignedsNeed;
- }
- // Hold the write lock when sorting childQueues
- writeLock.lock();
- try {
- Collections.sort(childQueues, policy.getComparator()); //排序又见排序 哈哈
- } finally {
- writeLock.unlock();
- }
- /*
- * We are releasing the lock between the sort and iteration of the
- * "sorted" list. There could be changes to the list here:
- * 1. Add a child queue to the end of the list, this doesn't affect
- * container assignment.
- * 2. Remove a child queue, this is probably good to take care of so we
- * don't assign to a queue that is going to be removed shortly.
- */
- readLock.lock();
- try {
- for (FSQueue child : childQueues) {
- List<Resource> assigneds = child.assignContainers(fsSchedulerNodes); //同样传入node集合
- if (!assigneds.isEmpty()) {
- for (Resource assign : assigneds) {
- assignedsNeed.add(assign);
- }
- break;
- }
- }
- } finally {
- readLock.unlock();
- }
- return assignedsNeed;
- }
app最终在FSLeafQueue节点上得到处理
- @Override
- public List<Resource> assignContainers(List<FSSchedulerNode> nodes) {
- Resource assigned = Resources.none();
- List<Resource> assigneds = new ArrayList<>();
- ArrayList<FSSchedulerNode> fsSchedulerNodes = new ArrayList<>();
- for (FSSchedulerNode node : nodes) {
- if (assignContainerPreCheck(node)) {
- fsSchedulerNodes.add(node);
- }
- }
- if (fsSchedulerNodes.isEmpty()) {
- LOG.info("Nodes is empty, skip this assign around");
- return assigneds;
- }
- // Apps that have resource demands.
- TreeSet<FSAppAttempt> pendingForResourceApps =
- new TreeSet<FSAppAttempt>(policy.getComparator());
- readLock.lock();
- try {
- for (FSAppAttempt app : runnableApps) { //所有的app running or pending 队列 进行依次排序
- Resource pending = app.getAppAttemptResourceUsage().getPending();
- if (!pending.equals(Resources.none())) { //有资源需求的加入排序队列
- pendingForResourceApps.add(app);
- }
- }
- } finally {
- readLock.unlock();
- }
- int count = 0; //每个node 分配container计数
- Set<String> repeatApp = new HashSet<>(); //定义去重集合
- for (FSSchedulerNode node : fsSchedulerNodes) { //node 遍历
- count = 0;
- for (FSAppAttempt sched : pendingForResourceApps) { //app遍历
- // One node just allocate for one app once
- if (repeatApp.contains(sched.getId())) { //去重
- continue;
- }
- if (SchedulerAppUtils.isPlaceBlacklisted(sched, node, LOG)) { //判断app有没有在node黑名单里
- continue;
- }
- if (node.getReservedContainer() == null
- && Resources.fitsIn(minimumAllocation, node.getAvailableResource())) { //判断node上还有没有资源
- assigned = sched.assignContainer(node); //具体分配container方法
- if (!assigned.equals(Resources.none())) {//给container 在node上分配到了资源
- count++;
- repeatApp.add(sched.getId());
- assigneds.add(assigned);
- if (LOG.isDebugEnabled()) {
- LOG.debug("Assigned container in queue:" + getName() + " " +
- "container:" + assigned);
- }
- }
- }
- if (count >= maxNodeContainerAssign) { //node 分配的数量 超出最大的配置数 跳出 给下一node 分配
- break;
- }
- }
- }
- return assigneds;
- }
这轮优化 完毕 对比之前 调度性能提高了四倍样子 线上的积压问题得到有效解决
优化后nodeUpdate耗时对比如下
hadoop2.9.0之前的版本yarn RM fairScheduler调度性能优化的更多相关文章
- hadoop2.6.0高可靠及yarn 高可靠搭建
以前用hadoop2.2.0只搭建了hadoop的高可用,但在hadoop2.2.0中始终没有完成YARN HA的搭建,直接下载了hadoop最新稳定版本2.6.0完成了YARN HA及HADOOP ...
- Hadoop YARN:调度性能优化实践(转)
https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html 文章 ...
- Hadoop-2.2.0中国文档—— MapReduce 下一代 -- 公平调度
目的 此文档描写叙述了 FairScheduler, Hadoop 的一个可插入式的调度器,同意 YARN 应用在一个大集群中公平地共享资源. 简单介绍 公平调度是一种分配资源给应用的方法.以致到最后 ...
- Hadoop-2.2.0中文文档—— MapReduce 下一代--容量调度器
目的 这份文档描写叙述 CapacityScheduler,一个为Hadoop能同意多用户安全地共享一个大集群的插件式调度器,如他们的应用能适时被分配限制的容量. 概述 CapacitySchedul ...
- Hadoop2.2.0(yarn)编译部署手册
Created on 2014-3-30URL : http://www.cnblogs.com/zhxfl/p/3633919.html @author: zhxfl Hadoop-2.2编译 ...
- hadoop2.6.0实践:004 启动伪分布式hadoop的进程
[hadoop@LexiaofeiMaster hadoop-2.6.0]$ start-dfs.shStarting namenodes on [localhost]localhost: start ...
- CentOS6.4编译Hadoop-2.4.0
因为搭建Hadoop环境的时候,所用的系统镜像是emi-centos-6.4-x86_64,是64位的,而hadoop是默认是32的安装包.这导致我们很多操作都会遇到这个问题(Java HotSp ...
- Hadoop 新生报道(二) hadoop2.6.0 集群系统版本安装和启动配置
本次基于Hadoop2.6版本进行分布式配置,Linux系统是基于CentOS6.5 64位的版本.在此设置一个主节点和两个从节点. 准备3台虚拟机,分别为: 主机名 IP地址 master 192. ...
- Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master、slave1和slave2)(博主推荐)
说白了 Spark on YARN模式的安装,它是非常的简单,只需要下载编译好Spark安装包,在一台带有Hadoop YARN客户端的的机器上运行即可. Spark on YARN简介与运行wor ...
随机推荐
- Tomcat7.0.40注册到服务启动报错error Code 1 +connector attribute sslcertificateFile must be defined when using ssl with apr
Tomcat7.0.40 注册到服务启动遇到以下几个问题: 1.启动报错errorCode1 查看日志如下图: 解决办法: 这个是因为我的jdk版本问题,因为电脑是64位,安装的jdk是32位的所以会 ...
- pdfminer API介绍:pdf网页爬虫
安装 pip install pdfminer 爬取数据是数据分析项目的第一个阶段,有的加密成pdf格式的文件,下载后需要解析,使用pdfminer工具. 先介绍一下什么是pdfminer 下面是官方 ...
- PHP in_array
1.函数的作用:判读一个元素是否在一个数组存在 2.函数的参数: @param mixed $needle @param array $array 3. if it’s ok to use isset ...
- 01 【PMP】组织结构类型
[PMP]组织结构类型 1.简单型 描述:人员并肩工作,所有者/经营者直接做出主要决定并监督执行. PM角色:兼职(协调员) PM权限:极少(无) 项目管理人员:极少(无) 资源可用性:极少(无) ...
- Luogu1119灾后重建
题目背景 BBB 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重建完成的村庄的公 ...
- Cocos2d-x 学习笔记(11.6) Sequence
1. Sequence 动作序列.动作按参数顺序执行,动作总时长为每个动作的时长之和. 1.1 成员变量 FiniteTimeAction *_actions[]; float _split; // ...
- unittest断言
assertEquals(expected,actual,msg=msg) # 判断 expected,actual是否一致,msg类似备注,可以为空
- 11.Linux用户特殊权限
1.特殊权限概述 前面我们已经学习过 r(读).w(写). x(执行)这三种普通权限,但是我们在査询系统文件权限时会发现出现了一些其他权限字母,比如: 2.特殊权限SUID set uid 简称sui ...
- ESP8266开发之旅 网络篇③ Soft-AP——ESP8266WiFiAP库的使用
1. 前言 在前面的篇章中,博主给大家讲解了ESP8266的软硬件配置以及基本功能使用,目的就是想让大家有个初步认识.并且,博主一直重点强调 ESP8266 WiFi模块有三种工作模式: St ...
- 在已有 Windows10 系统的基础上,安装 Ubuntu17.10 系统(新版 BIOS)
1.第一步,下载Ubuntu系统镜像 2.第二步,制作启动U盘,使用UltralSO,步骤:打开文件——选择iso文件——启动——写入硬盘映像——选择U盘——写入 3.第三步,分区,在Windows徽 ...