题目链接

Snowy Smile

Problem Description

There are n pirate chests buried in Byteland, labeled by 1,2,…,n. The i-th chest's location is (xi,yi), and its value is wi, wi can be negative since the pirate can add some poisonous gases into the chest. When you open the i-th pirate chest, you will get wi value.

You want to make money from these pirate chests. You can select a rectangle, the sides of which are all paralleled to the axes, and then all the chests inside it or on its border will be opened. Note that you must open all the chests within that range regardless of their values are positive or negative. But you can choose a rectangle with nothing in it to get a zero sum.

Please write a program to find the best rectangle with maximum total value.

Input

The first line of the input contains an integer T(1≤T≤100), denoting the number of test cases.

In each test case, there is one integer n(1≤n≤2000) in the first line, denoting the number of pirate chests.

For the next n lines, each line contains three integers xi,yi,wi(−109≤xi,yi,wi≤109), denoting each pirate chest.

It is guaranteed that ∑n≤10000.

Output

For each test case, print a single line containing an integer, denoting the maximum total value.

Sample Input

2

4

1 1 50

2 1 50

1 2 50

2 2 -500

2

-1 1 5

-1 1 1

Sample Output

100

6

题意

平面上有n个点,每个点有价值\(w_i\),可以任意选一个矩形,获取矩形内所有点的值,求最大的价值和为多少

题解

先对所有点坐标离散化,枚举矩形上界,对于上界及以下的点,以y坐标相等的点为一组,按y从大到小,一组一组的插入线段树,每插入完一组点,用线段树求出当前的最大子段和,整个过程相当于在枚举矩形上下界,利用线段树维护最大子段和。

线段树每个节点维护:区间和,左端点向右最大子段和,右端点向左最大子段和,区间最大子段和,用类似区间合并的方式合并

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int mx = 2005;
const ll INF = 1e18; bool vis[mx][mx]; struct Node {
int x, y, w;
int p, q;
}node[mx]; vector <int> vx, vy;
vector <Node> mp[mx]; int getidx(int x) {
return lower_bound(vx.begin(), vx.end(), x) - vx.begin() + 1;
} int getidy(int y) {
return lower_bound(vy.begin(), vy.end(), y) - vy.begin() + 1;
} struct Tree {
ll sum;
ll Lans, Rans, ans;
}tree[mx<<2]; void pushUp(int rt) {
tree[rt].ans = max(max(tree[rt<<1].ans, tree[rt<<1|1].ans), tree[rt<<1].Rans+tree[rt<<1|1].Lans);
tree[rt].Lans = max(tree[rt<<1].Lans, tree[rt<<1].sum+tree[rt<<1|1].Lans);
tree[rt].Rans = max(tree[rt<<1|1].Rans, tree[rt<<1|1].sum+tree[rt<<1].Rans);
tree[rt].sum = tree[rt<<1].sum + tree[rt<<1|1].sum;
} void build(int l, int r, int rt) {
if (l == r) {
tree[rt].sum = tree[rt].Lans = tree[rt].Rans = tree[rt].ans = 0;
return;
}
int mid = (l + r) / 2;
build(l, mid, rt<<1);
build(mid+1, r, rt<<1|1);
pushUp(rt);
} void update(int pos, int val, int l, int r, int rt) {
if (l == r) {
tree[rt].sum += val;
tree[rt].Lans = tree[rt].Rans = tree[rt].ans = tree[rt].sum;
return;
}
int mid = (l + r) / 2;
if (pos <= mid) update(pos, val, l, mid, rt<<1);
else update(pos, val, mid+1, r, rt<<1|1);
pushUp(rt);
} int main() {
int T;
scanf("%d", &T); while (T--) {
vx.clear(); vy.clear(); int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d%d%d", &node[i].x, &node[i].y, &node[i].w);
vx.push_back(node[i].x);
vy.push_back(node[i].y);
}
sort(vx.begin(), vx.end()); sort(vy.begin(), vy.end());
vx.erase(unique(vx.begin(), vx.end()), vx.end());
vy.erase(unique(vy.begin(), vy.end()), vy.end()); for (int i = 1; i <= n; i++) {
node[i].p = getidx(node[i].x);
node[i].q = getidy(node[i].y);
}
for (int i = 1; i <= vy.size(); i++) mp[i].clear();
for (int i = 1; i <= n; i++) mp[node[i].q].push_back(node[i]);
ll ans = 0;
for (int i = 1; i <= vy.size(); i++) {
build(1, vx.size(), 1);
for (int j = i; j <= vy.size(); j++) {
for (int k = 0; k < mp[j].size(); k++) {
Node tmp = mp[j][k];
update(tmp.p, tmp.w, 1, vx.size(), 1);
}
ans = max(ans, tree[1].ans);
}
}
printf("%lld\n", ans);
}
return 0;
}

hdu-6638 Snowy Smile的更多相关文章

  1. HDU 6638 - Snowy Smile 线段树区间合并+暴力枚举

    HDU 6638 - Snowy Smile 题意 给你\(n\)个点的坐标\((x,\ y)\)和对应的权值\(w\),让你找到一个矩形,使这个矩阵里面点的权值总和最大. 思路 先离散化纵坐标\(y ...

  2. 最大矩阵覆盖权值--(静态连续最大子段 (线段树) )-HDU(6638)Snowy Smile

    这题是杭电多校2019第六场的题目 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你平面上n个点,每个点都有权值(有负权),让你计算一 ...

  3. 2019杭电多校第六场hdu6638 Snowy Smile(线段树+枚举)

    Snowy Smile 题目传送门 解题思路 先把y离散化,然后把点按照x的大小进行排序,我们枚举每一种x作为上边界,然后再枚举其对应的每一种下边界.按照这种顺序插入点,这是一个压维的操作,即在线段树 ...

  4. 2019杭电暑假多校训练 第六场 Snowy Smile HDU - 6638

    很多题解都是简单带过,所以打算自己写一篇,顺便也加深自己理解 前置知识:线段树.线段树维护最大字段和.二维坐标离散化 题解: 1.很容易想到我们需要枚举所有子矩阵来得到一个最大子矩阵,所以我们的任务是 ...

  5. 2019杭电多校6 hdu6638 Snowy Smile(二维最大矩阵和 线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你一些点的权值,让找一个矩形圈住一部分点,问圈住点的最大权值和 分析:由于是稀疏图,明显要先把x, ...

  6. [2019杭电多校第六场][hdu6638]Snowy Smile(维护区间最大子段和)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意为在一个平面上任意选择一个长方形,使得长方形内点权和最大. 因为长方形可以任意选择,所以上下 ...

  7. 2019 Multi-University Training Contest 7 - 1006 - Snowy Smile - 线段树

    http://acm.hdu.edu.cn/showproblem.php?pid=6638 偷学一波潘哥的二维离散化和线段树维护最大子段和. 思路是枚举上下边界,但是不需要从左到右用最大子段和dp. ...

  8. 【HDOJ6638】Snowy Smile(线段树)

    题意:一个二维平面上有n个点,每个点的坐标是(x[i],y[i]),权值是w[i] 求一个矩形使得其中所有点的权值和最大,输出权值和 n<=2e3,x[i],y[i],w[i]的绝对值<= ...

  9. 2019 Multi-University Training Contest 6 Snowy Smile (最大字段和变形)

    题意: 求一个子矩阵要求其矩阵内的合最大. 题解: 正常的求最大子矩阵的复杂度是O(n^3) 对于这一题说复杂度过不去,注意到这个题总共只有2000个点关键点在与这里优化 最大子矩阵可以压缩矩阵变成最 ...

随机推荐

  1. 章节十五、5-记录日志---Log4j

    一.为什么要用Log4j记录日志? 日志记录对于任何应用程序都非常重要. 它可以帮助我们快速调试代码,通过收集代码执行的信息让代码容易维护. 二.Log4j 是什么? Apache为Java提供的日志 ...

  2. .net core 基于 IHostedService 实现定时任务

    .net core 基于 IHostedService 实现定时任务 Intro 从 .net core 2.0 开始,开始引入 IHostedService,可以通过 IHostedService ...

  3. Git 服务使用搭建集合

    Git 服务使用搭建集合 一.本地Git 仓库搭建与使用 1.Git 概念介绍 版本控制系统 版本控制是一种记录若干文件内容变化,以便将来查阅特定版本修订情况的系统.大部分时候我们使用最频繁的还是对源 ...

  4. Robotframework获取移动端toast问题

    背景: 在做移动端自动化测试的时候,经常会遇到一个问题就是获取toast提示问题,如果需要解决这个问题需要重新处理,不能按照正常的逻辑,使用robotframework自带的关键字进行获取,需要重新考 ...

  5. CentOS 7服务器安装brook和bbr加速

    一.安装Brook 执行一键部署脚本 $ wget -N --no-check-certificate wget -N --no-check-certificate https://raw.githu ...

  6. Java实现调用Bartender控制条码打印机

    官方提供的主要是C#支持. 基于java调用bartender二次开发官方给了一份1998年的J#代码,,,完全用不了,,,百度谷歌搜索万能的网友的答案,发现也没有可参考的.. 最后想到了之前用到了一 ...

  7. java多线程中wait/notify/sleep/join/yield方法以及多线程的六种状态

    刚开始学线程的时候也是被这几个方法搞的云里雾里的,尤其是一开始看的毕老师的视频,老师一直在强调执行权和执行资格,看的有点懵逼,当然不是说毕老师讲的不好,就是自己有点没听明白,后来复习看了一些其他的博客 ...

  8. h5微信浏览器复制粘贴--ios兼容问题的解决方法(clipboard.js插件)

    前段时间在做微信h5的时候,遇到了ios兼容,使用clipboard.js插件完美解决 下载地址:下载地址: https://github.com/zenorocha/clipboard.js cnd ...

  9. Hadoop - YARN Introduce

    YARN Introduce 1. MapReduce1.0缺陷 (1)存在单点故障 (2)JobTracker"大包大揽"导致任务过重(任务多时内存开销大,上限4000节点) ( ...

  10. SpringCloud微服务小白入门之Eureka注册中心和服务中心搭建示例

    一.注册中心配置文件 代码复制区域: spring: application: name: spring-cloud-server server: port: 7000 eureka: instanc ...