【NOI 2011】阿狸的打字机
Problem
Description
阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有 \(28\) 个按键,分别印有 \(26\) 个小写英文字母和 B
、 P
两个字母。 经阿狸研究发现,这个打字机是这样工作的:
- 输入小写字母,打字机的一个凹槽中会加入这个字母(按
P
前凹槽中至少有一个字母)。 - 按一下印有
B
的按键,打字机凹槽中最后一个字母会消失。 - 按一下印有
P
的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失(保证凹槽中至少有一个字母)。
例如,阿狸输入 aPaPBbP
,纸上被打印的字符如下:
a
aa
ab
我们把纸上打印出来的字符串从 \(1\) 开始顺序编号,一直到 \(n\) 。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数 \((x,y)\) (其中 \(1 \le x,y \le n\) ),打字机会显示第 \(x\) 个打印的字符串在第 \(y\) 个打印的字符串中出现了多少次。
阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?
Input Format
输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。
第二行包含一个整数 \(m\) ,表示询问个数。 接下来 \(m\) 行描述所有由小键盘输入的询问。其中第i行包含两个整数 \(x, y\) ,表示第i个询问为 \((x, y)\) 。
Output Format
输出 \(m\) 行,其中第 \(i\) 行包含一个整数,表示第 \(i\) 个询问的答案。
Sample
Input
aPaPBbP
3
1 2
1 3
2 3
Output
2
1
0
Range
所有测试数据的范围和特点如下表所示:
测试点编号 | \(n\) 的规模 | \(m\) 的规模 | 字符串长度 | 输入总长 (输入文件第一行的字符数) |
---|---|---|---|---|
1 | \(1\le n \le 100\) | \(1\le m \le 1000\) | - | \(\le 100\) |
2 | \(1\le n \le 100\) | \(1\le m \le 1000\) | - | \(\le 100\) |
3 | \(1\le n \le 1000\) | \(1\le m \le 10^4\) | 单个长度 \(\le 1000\) ,总长度 \(\le 10^5\) | \(\le 10^5\) |
4 | \(1\le n \le 1000\) | \(1\le m \le 10^4\) | 单个长度 \(\le 1000\) ,总长度 \(\le 10^5\) | \(\le 10^5\) |
5 | \(1\le n \le 10^4\) | \(1\le m \le 10^5\) | 总长度 \(\le 10^5\) | \(\le 10^5\) |
6 | \(1\le n \le 10^4\) | \(1\le m \le 10^5\) | 总长度 \(\le 10^5\) | \(\le 10^5\) |
7 | \(1\le n \le 10^4\) | \(1\le m \le 10^5\) | 总长度 \(\le 10^5\) | \(\le 10^5\) |
8 | \(1\le n \le 10^5\) | \(1\le m \le 10^5\) | - | \(\le 10^5\) |
9 | \(1\le n \le 10^5\) | \(1\le m \le 10^5\) | - | \(\le 10^5\) |
10 | \(1\le n \le 10^5\) | \(1\le m \le 10^5\) | - | \(\le 10^5\) |
Algorithm
\(Trie\) 图,树状数组
Mentality
欲得正解,先想暴力。
思考一下暴力怎么做:建 \(Trie\) -> 建 \(fail\) -> 对于每对询问 \(x,y\),由于 \(y\) 已经插入了 \(Trie\) 里,直接从 \(y\) 对应的终止结点往根走,并在每个点跳 \(fail\) 来计算答案。
当然,为了后面的分数,建 \(Trie\) 的时侯我们还是不能这么裸的,应该利用不同字符串间的高度重复性。由于打字机必需从末尾一个个删除字母,我们可以维护一个指针 \(pos\) 指向上个字符串的结尾,每当运行一次删除操作且此次操作会导致当前字符串与上一字符串的前缀重合长度 \(-1\) ,就令 \(pos\) 跳至父亲结点处。当执行打印命令时,则从 \(pos\) 处开始建 \(Trie\) 即可。
不难知道,这样我们的得分是 \(40\) 。
接下来,我们发现,\(fail\) 指针是构成了一棵树的,那么我们本来对于询问的暴力跳跃就可以得到转化:在 \(x\) 的 \(fail\) 边子树内,有多少个结点属于 \(y\) ?
那接下来就很明显了:
先预处理出 \(fail\) 树上的 \(dfn\) 序,然后离线询问,将询问挂载在 \(y\) 的终止结点上。
然后对 \(Trie\) 做 \(dfs\) ,每当进入一个结点就在对应的 \(fail\) 树上的 \(dfn\) 序位置 \(+1\) ,当退出一个结点就 \(-1\) 。这样一来,每当到达一个结点,就有且仅有根结点到当前结点路径上的点对应位置 \(+1\) ,满足了询问的统计条件。
每到一个询问点 \(x\) ,查询 \([dfn[x],dfn[x]+size[x]-1]\) 区间内的 \(1\) 的个数即为答案。
Code
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
void read(int &x) {
x = 0;
char ch = getchar();
while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
}
const int Max_n = 1e5 + 1, Max_m = 1e5 + 1, Max_len = 1e5 + 1, M = 26;
int n, m, Ans[Max_n];
int top, pos, cnt_T, End[Max_n];
char S[Max_len], now_S[Max_len];
vector<int> que_d[Max_len], que_x[Max_len];
queue<int> q;
void Trie_add(int x);
struct Trie {
int sur, ch[M], fa, deep, End;
int nx(int x, int now) {
if (!ch[x]) {
ch[x] = ++cnt_T;
Trie_add(now);
}
return ch[x];
}
} k[Max_len], tp[Max_len];
void Trie_add(int x) { k[cnt_T].fa = x, k[cnt_T].deep = k[x].deep + 1; }
void Trie_build() {
for (int i = 0; i < M; i++)
if (k[0].ch[i]) q.push(k[0].ch[i]);
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = 0; i < M; i++)
if (k[x].ch[i])
k[k[x].ch[i]].sur = k[k[x].sur].ch[i], q.push(k[x].ch[i]);
else
k[x].ch[i] = k[k[x].sur].ch[i];
}
}
int cntr, head[Max_len], nx[Max_len], to[Max_len];
int cntd, d[Max_len], size[Max_len];
int cnts, s[Max_len << 1];
int c[Max_len];
bool vis[Max_len];
void get_s(int x) {
s[++cnts] = x;
for (int i = 0; i < M; i++)
if (k[x].ch[i]) get_s(k[x].ch[i]);
s[++cnts] = x;
}
void addr(int u, int v) {
cntr++;
to[cntr] = v, nx[cntr] = head[u];
head[u] = cntr;
}
void Tree_build(int x) {
size[x] = 1, d[x] = ++cntd;
for (int i = head[x]; i; i = nx[i]) Tree_build(to[i]), size[x] += size[to[i]];
}
void c_add(int k, int x) {
if (!k) return;
for (int i = k; i <= cnt_T + 1; i += i & -i) c[i] += x;
}
int c_query(int k) {
int ans = 0;
for (int i = k; i; i -= i & -i) ans += c[i];
return ans;
}
void Ans_Count(int x) {
for (int i = 1; i <= cnts; i++) {
int x = s[i];
if (!vis[x]) { // 第一次访问代表进入结点
vis[x] = 1, c_add(d[x], 1);
for (int j = que_d[x].size() - 1; ~j; j--) {
int now = que_x[x][j];
Ans[que_d[x][j]] =
c_query(d[now] + size[now] - 1) - c_query(d[now] - 1);
}
} else // 第二次访问代表退出结点
c_add(d[x], -1);
}
}
int main() {
scanf("%s", S);
for (int i = 0, lim = strlen(S); i < lim; i++) {
if (S[i] == 'B')
top--, pos = k[pos].fa; // pos 的处理
else if (S[i] == 'P') {
for (int p = k[pos].deep + 1; p <= top; p++) // pos 的使用
pos = k[pos].nx(now_S[p] - 'a', pos);
k[pos].End = ++n;
End[n] = pos;
} else
now_S[++top] = S[i];
}
get_s(0); // 先处理出 Trie 树上点的访问顺序
Trie_build(); // fail 指针构建
read(m);
int x, y;
for (int i = 1; i <= m; i++) {
read(x), read(y);
que_d[End[y]].push_back(i);
que_x[End[y]].push_back(End[x]); // 挂载询问
}
for (int i = 1; i <= cnt_T; i++) addr(k[i].sur, i); // 连接 fail 边
Tree_build(0); // 构建 fail 树
Ans_Count(0); // 统计答案
for (int i = 1; i <= m; i++) printf("%d\n", Ans[i]);
}
【NOI 2011】阿狸的打字机的更多相关文章
- [NOI 2011]阿狸的打字机
Description 题库链接 给你 \(n\) 个单词, \(m\) 组询问,每组询问形同 \((x,y)\) ,询问 \(x\) 串在 \(y\) 串中出现多少次. \(1\leq n,m\le ...
- NOI 2011 阿狸的打字机(AC自动机+主席树)
题意 https://loj.ac/problem/2444 思路 多串匹配,考虑 \(\text{AC}\) 自动机.模拟打字的过程,先建出一棵 \(\text{Trie}\) 树,把它变成自动机 ...
- NOI 2011 阿狸的打字机 (AC自动机+dfs序+树状数组)
题目大意:略(太长了不好描述) 良心LOJ传送门 先对所有被打印的字符串建一颗Trie树 观察数据范围,并不能每次打印都从头到尾暴力建树,而是每遍历到一个字符就在Trie上插入这个字符,然后记录每次打 ...
- NOI 2011 【阿狸的打字机】
之前讲了[AC自动姬],今天我终于把这题给刚下来了...嗯,来给大家讲一讲. 题目描述: 打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工 ...
- BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2545 Solved: 1419[Submit][Sta ...
- 【BZOJ-2434】阿狸的打字机 AC自动机 + Fail树 + DFS序 + 树状数组
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2022 Solved: 1158[Submit][Sta ...
- BZOJ_2434_[NOI2011]_阿狸的打字机_(AC自动机+dfs序+树状数组)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2434 给出\(n\)个字符串,\(m\)个询问,对于第\(i\)个询问,求第\(x_i\)个字 ...
- AC自动机:BZOJ 2434 阿狸的打字机
2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1834 Solved: 1053[Submit][Sta ...
- BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )
一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...
- [NOI2011]阿狸的打字机(好题!!!!)
2785: [NOI2011]阿狸的打字机 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 7 Solved: 3[Submit][Status][We ...
随机推荐
- 批量SSH key-gen无密码登陆认证脚本
SSH key-gen无密码登录认证脚本 使用为了让linux之间使用ssh不需要密码,可以采用了数字签名RSA或者DSA来完成.主要使用ssh-key-gen实现. 通过 ssh-key-gen 来 ...
- Python面向对象-多重继承之MixIN
以Animal类为例,假设要实现以下4种动物: Dog(狗).Bat(蝙蝠).Parrot(鹦鹉)和Ostrich(鸵鸟) 如果按照哺乳类和鸟类来区分的话,可以这样设计: Animal: |--Mam ...
- Python面向对象-@property装饰器
python中,我们可以直接添加和修改属性的值: >>> class Student(object): ... pass ... >>> s = Student() ...
- Nginx配置实例-动静分离实例:搭建静态资源服务器
场景 Nginx入门简介和反向代理.负载均衡.动静分离理解: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/102790862 U ...
- Mysql被黑客入侵及安全措施总结
情况概述 今天登陆在腾讯云服务器上搭建的 MySQL 数据库,发现数据库被黑了,黑客提示十分明显. MySQL 中只剩下两个数据库,一个是information_schema,另一个是黑客创建的PLE ...
- 安装最新版 windows正版软件地址(visio,office)
链接地址为 https://msdn.itellyou.cn/ 进入后直接搜 然后复制链接使用迅雷下载 很快完成 但是都是原生的 需要破解 提供一个visio的破解软件 亲测有效 链接:https:/ ...
- 前端小白webpack学习(三)
不写不知道,一写发现自己真是罗里吧嗦,尽量改进 之前写了webpack的主要概念和一些使用,今天再记一下webpack的plugins和loaders的使用 7.webpack plugins使用 例 ...
- shiro认证授权
一.shiro基础概念 Authentication:身份认证 / 登录,验证用户是不是拥有相应的身份: Authorization:授权,即权限验证,验证某个已认证的用户是否拥有某个权限:即判断用户 ...
- Android 下载进度对话框 ProgressDialog
protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentV ...
- AndroidStudio配置好了so文件运行却报错 java.lang.UnsatisfiedLinkError:
报错截图: 解决方法:在app的build.gradle 下的defaultConfig里面添加过滤即可: ndk { abiFilters 'armeabi' //兼容x86cpu架构 需要什么样的 ...