假设我们现在拿到了一个非常大的数组,对于这个数组里面的数字要反复不断地做两个操作。

1、(query)随机在这个数组中选一个区间,求出这个区间所有数的和。

2、(update)不断地随机修改这个数组中的某一个值。

时间复杂度:

枚举

枚举L~R的每个数并累加。

  • query:O(n)

找到要修改的数直接修改。

  • update:O(1)

如果query与update要做很多很多次,query的O(n)会被卡住,所以时间复杂度会非常慢。那么有没有办法把query的时间复杂度降成O(1)呢?其中一种方法如下:

  • 先建立一个与a数组一样大的数组。

  • s[1]=a[1];s[2]=a[1]+a[2];s[3]=a[1]+a[2]+a[3];...;s[n]=a[1]+a[2]+a[3]+...+a[n](在s数组中存入a的前缀和)

  • 此时a[L]+a[L+1]+...+a[R]=s[R]-s[L-1],query的时间复杂度降为O(1)。
  • 但若要修改a[k]的值,随之也需修改s[k],s[k+1],...,s[n]的值,时间复杂度升为O(n)。

前缀和

query:O(1)

update:O(n)

  • 我们发现,当我们想尽方法把其中一个操作的时间复杂度改成O(1)后,另一个操作的时间复杂度就会变为O(n)。当query与update的操作特别多时,不论用哪种方法,总体的时间复杂度都不会特别快。
  • 所以,我们将要讨论一种叫线段树的数据结构,它可以把这两个操作的时间复杂度平均一下,使得query和update的时间复杂度都落在O(n log n)上,从而增加整个算法的效率。

线段树

假设我们拿到了如下长度为6的数组:

在构建线段树之前,我们先阐述线段树的性质:

1、线段树的每个节点都代表一个区间。

2、线段树具有唯一的根节点,代表的区间是整个统计范围,如[1,N]。

3、线段树的每个叶节点都代表一个长度为1的元区间[x,x]。

4、对于每个内部节点[l,r],它的左子结点是[l,mid],右子节点是[mid+1,r],其中mid=(l+r)/2(向下取整)。

依照这个数组,我们构建如下线段树(结点的性质为sum):

若我们要求[2-5]区间中数的和:

若我们要把a[4]改为6:

  • 先一层一层找到目标节点修改,在依次向上修改当前节点的父节点。

接下来的问题是:如何保存这棵线段树?

  • 用数组存储。

若我们要取node结点的左子结点(left)与右子节点(right),方法如下:

  • left=2*node+1
  • right=2*ndoe+2

举结点5为例(左子结点为节点11,右子节点为节点12):

  • left5=2*5+1=11
  • right5=2*5+2=12

接下来给出建树的代码:

#include<bits/stdc++.h>
using namespace std; const int N = ; int a[] = {, , , , , };
int size = ;
int tree[N] = {}; //建立范围为a[start]~a[end]
void build(int a[], int tree[], int node/*当前节点*/, int start, int end){
//递归边界(即遇到叶子节点时)
if (start == end){
//直接存储a数组中的值
tree[node] = a[start];
} else {
//将建立的区间分成两半
int mid = (start + end) / ; int left = * node + ;//左子节点的下标
int right = * node + ;//右子节点的下标 //求出左子节点的值(即从节点left开始,建立范围为a[start]~a[mid])
build(a, tree, left, start, mid);
//求出右子节点的值(即从节点right开始,建立范围为a[start]~a[mid])
build(a, tree, right, mid+, end); //当前节点的职位左子节点的值加上右子节点的值
tree[node] = tree[left] + tree[right];
}
} int main(){
//从根节点(即节点0)开始建树,建树范围为a[0]~a[size-1]
build(a, tree, , , size-); for(int i = ; i <= ; i ++)
printf("tree[%d] = %d\n", i, tree[i]); return ;
}

运行结果:

update操作:

  • 确定需要改的分支,向下寻找需要修改的节点,再向上修改节点值。
  • 与建树的函数相比,update函数增加了两个参数x,val,即把a[x]改为val。

例:把a[x]改为6(代码实现)

void update(int a[], int tree[], int node, int start, int end, int x, int val){
//找到a[x],修改值
if (start == end){
a[x] = val;
tree[node] = val;
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; if (x >= start && x <= mid) {//如果x在左分支
update(a, tree, start, mid, x, val);
}
else {//如果x在右分支
update(a, tree, right, mid+, end, x, val);
} //向上更新值
tree[node] = tree[left] + tree[right];
}
} 在主函数中调用:
//把a[x]改成6
update(a, tree, , , size-, , );

运行结果:

query操作:

  • 向下依次寻找包含在目标区间中的区间,并累加。
  • 与建树的函数相比,query函数增加了两个参数L,Rl,即把求a的区间[L,R]的和。

例:求a[2]+a[3]+...+a[5]的值(代码实现)

int query(int a[], int tree[], int node, int start, int end, int L,int R){
//若目标区间与当时区间没有重叠,结束递归返回0
if (start > R || end < L){
return ;
} //若目标区间包含当时区间,直接返回节点值
else if (L <=start && end <= R){
return tree[node];
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; //计算左边区间的值
int sum_left = query(a, tree, left, start, mid, L, R);
//计算右边区间的值
int sum_right = query(a, tree, right, mid+, end, L, R); //相加即为答案
return sum_left + sum_right;
}
} 在主函数中调用:
//求区间[2,5]的和
int ans = query(a, tree, , , size-, , );
printf("ans = %d", ans);

运行结果:

最后,献上完整的代码:

#include<bits/stdc++.h>
using namespace std; const int N = ; int a[] = {, , , , , };
int size = ;
int tree[N] = {}; //建立范围为a[start]~a[end]
void build(int a[], int tree[], int node/*当前节点*/, int start, int end){
//递归边界(即遇到叶子节点时)
if (start == end) {
//直接存储a数组中的值
tree[node] = a[start];
} else {
//将建立的区间分成两半
int mid = (start + end) / ; int left = * node + ;//左子节点的下标
int right = * node + ;//右子节点的下标 //求出左子节点的值(即从节点left开始,建立范围为a[start]~a[mid])
build(a, tree, left, start, mid);
//求出右子节点的值(即从节点right开始,建立范围为a[start]~a[mid])
build(a, tree, right, mid+, end); //当前节点的职位左子节点的值加上右子节点的值
tree[node] = tree[left] + tree[right];
}
} void update(int a[], int tree[], int node, int start, int end, int x, int val){
//找到a[x],修改值
if (start == end){
a[x] = val;
tree[node] = val;
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; if (x >= start && x <= mid) {//如果x在左分支
update(a, tree, left, start, mid, x, val);
}
else {//如果x在右分支
update(a, tree, right, mid+, end, x, val);
} //向上更新值
tree[node] = tree[left] + tree[right];
}
} //求a[L]~a[R]的区间和
int query(int a[], int tree[], int node, int start, int end, int L,int R){
//若目标区间与当时区间没有重叠,结束递归返回0
if (start > R || end < L){
return ;
} //若目标区间包含当时区间,直接返回节点值
else if (L <=start && end <= R){
return tree[node];
} else {
int mid = (start + end) / ; int left = * node + ;
int right = * node + ; //计算左边区间的值
int sum_left = query(a, tree, left, start, mid, L, R);
//计算右边区间的值
int sum_right = query(a, tree, right, mid+, end, L, R); //相加即为答案
return sum_left + sum_right;
}
} int main(){
//从根节点(即节点0)开始建树,建树范围为a[0]~a[size-1]
build(a, tree, , , size-); for(int i = ; i <= ; i ++)
printf("tree[%d] = %d\n", i, tree[i]);
printf("\n"); //把a[x]改成6
update(a, tree, , , size-, , ); for(int i = ; i <= ; i ++)
printf("tree[%d] = %d\n", i, tree[i]);
printf("\n"); //求区间[2,5]的和
int ans = query(a, tree, , , size-, , );
printf("ans = %d", ans); return ;
}

运行结果:

学习视频链接

【数据结构】线段树(Segment Tree)的更多相关文章

  1. 『线段树 Segment Tree』

    更新了基础部分 更新了\(lazytag\)标记的讲解 线段树 Segment Tree 今天来讲一下经典的线段树. 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间 ...

  2. 线段树(Segment Tree)(转)

    原文链接:线段树(Segment Tree) 1.概述 线段树,也叫区间树,是一个完全二叉树,它在各个节点保存一条线段(即“子数组”),因而常用于解决数列维护问题,基本能保证每个操作的复杂度为O(lg ...

  3. 【数据结构系列】线段树(Segment Tree)

    一.线段树的定义 线段树,又名区间树,是一种二叉搜索树. 那么问题来了,啥是二叉搜索树呢? 对于一棵二叉树,若满足: ①它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 ②若它的右子树不空, ...

  4. BZOJ.4695.最假女选手(线段树 Segment tree Beats!)

    题目链接 区间取\(\max,\ \min\)并维护区间和是普通线段树无法处理的. 对于操作二,维护区间最小值\(mn\).最小值个数\(t\).严格次小值\(se\). 当\(mn\geq x\)时 ...

  5. 线段树(segment tree)

    线段树在一些acm题目中经常见到,这种数据结构主要应用在计算几何和地理信息系统中.下图就为一个线段树: (PS:可能你见过线段树的不同表示方式,但是都大同小异,根据自己的需要来建就行.) 1.线段树基 ...

  6. 浅谈线段树 Segment Tree

    众所周知,线段树是algo中很重要的一项! 一.简介 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在 ...

  7. 线段树 Interval Tree

    一.线段树 线段树既是线段也是树,并且是一棵二叉树,每个结点是一条线段,每条线段的左右儿子线段分别是该线段的左半和右半区间,递归定义之后就是一棵线段树. 例题:给定N条线段,{[2, 5], [4, ...

  8. 第二十九篇 玩转数据结构——线段树(Segment Tree)

          1.. 线段树引入 线段树也称为区间树 为什么要使用线段树:对于某些问题,我们只关心区间(线段) 经典的线段树问题:区间染色,有一面长度为n的墙,每次选择一段墙进行染色(染色允许覆盖),问 ...

  9. 算法手记 之 数据结构(线段树详解)(POJ 3468)

    依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不 ...

  10. ACM数据结构-线段树

    1.维护区间最大最小值模板(以维护最小值为例) #include<iostream> #include<stdio.h> #define LEN 11 #define MAX ...

随机推荐

  1. C语言学习书籍推荐《学习使用C指针(影印版)(英文本)》下载

    <学习使用C指针(影印版)(英文本)>作者通过<学习使用C指针(影印版)(英文本)>中的内存模型为你展示了如何在数组.字符串.结构和函数中使用指针.虽然难以掌握,但是指针为C语 ...

  2. C语言学习书籍推荐《学通C语言的24堂课》下载

    下载地址:点我 编辑推荐 <学通C语言的24堂课>:用持续激励培养良好习惯以良好习惯铸就伟大梦想——致亲爱的读者朋友在开始学习<学通C语言的24堂课>的同时,强烈建议读者朋友同 ...

  3. WPF 入门笔记之控件内容控件

    一.控件类 在WPF中和用户交互的元素,或者说.能够接受焦点,并且接收键盘鼠标输入的元素所有的控件都继承于Control类. 1. 常用属性: 1.1 Foreground:前景画刷/前景色(文本颜色 ...

  4. GitHub & Git 的学习之始

    唉,简单地说,感受只有四个字:蓝瘦香菇. 我的GitHub地址为: https://github.com/LinJingYun  (这个,,我不知道具体从哪里找到自己地址啊) 接下来说一下我对git和 ...

  5. Go语言设计模式汇总

    目录 设计模式背景和起源 设计模式是什么 Go语言模式分类 个人观点 Go语言从面世就受到了业界的普遍关注,随着区块链的火热Go语言的地位也急速蹿升,为了让读者对设计模式在Go语言中有一个初步的了解和 ...

  6. [原创]SSH Tunnel for UDP

    SSH Tunnel for UDP UDP port forwarding is a bit more complicated. We will need to convert the packet ...

  7. Lucene01--倒排索引思想

    Lucene01--倒排索引思想 1. 倒排索引的概念: 首先对数据按列拆分存储,然后对文档中的数据分词,对词条进行索引,并记录词条在文档中出现的位置.这样查找时只要找到了词条,就找到了对应的文档.概 ...

  8. Excel催化剂开源第34波-SM.MS图床API调用(用POST上传multipart/form-data内容)

    日常做网抓数据,都是以GET请求为主,偶尔遇到需要POST请求的,一般POST的参数只是一串字符串就可以了,通过构造字符串也很容易完成,但此次SM.MS的API接口要求是Content-Type: m ...

  9. 查询表格——建立动态表格,使用ajax输入查询条件将后台数据查询出来以表格的形式展示出来

    建立动态表格,使用ajax将前台查询条件传给后台,并将查询结果以表格的形式展示出来. 页面的展示效果如下图所示: 第一步:查询条件的部分: 代码如下: <div class="text ...

  10. [OpenGL] 不规则区域的填充算法

    不规则区域的填充算法 一.简单递归 利用Dfs实现简单递归填充. 核心代码: // 简单深度搜索填充 (四连通) void DfsFill(int x, int y) { || y < || x ...