1、解方程转化为优化问题

$n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{   }\vdots  \\& {{P}_{n}}(x)=0 \\\end{aligned} \right.\text{              }x=\left[ \begin{aligned}  & {{x}_{1}} \\& {{x}_{2}} \\& \vdots  \\& {{x}_{n}} \\\end{aligned} \right]\text{    (n个自变量}\text{)}$

这个方程组里面的每一个函数${{P}_{i}}(x)$都是光滑 (一般指至少存在一阶和二阶导数)的,其函数可能是线性的,也可能是非线性的。

把上述解方程的问题转化为,优化问题:

$\text{ }x=\left[ \begin{aligned}& {{x}_{1}} \\& {{x}_{2}} \\& \vdots  \\& {{x}_{n}} \\\end{aligned} \right]\text{           }\left\{ \begin{aligned}& {{P}_{1}}(x)=0\text{    }\leftrightarrow  \\& {{P}_{2}}(x)=0\text{    }\leftrightarrow \text{ } \\& \text{   }\vdots  \\& {{P}_{n}}(x)=0\text{}\leftrightarrow  \\\end{aligned} \right.\left. \begin{aligned}& {{P}_{1}}^{2}(x)=0 \\& {{P}_{2}}^{2}(x)=0 \\& \vdots  \\& {{P}_{n}}^{2}(x)=0 \\\end{aligned} \right\}\text{ }\leftrightarrow \sum\limits_{i=1}^{n}{{{P}_{i}}^{2}(x)=0}$

这解法的好处:

  • 即便方程没有解,也可以通过$\operatorname{minimize}\text{  }f(x)=\sum\limits_{i=1}^{n}{{{P}_{i}}^{2}(x)}$求得近似解;
  • 在这里不要求方程组里面的函数${{P}_{i}}(x)$是多项式,可以是三角函数、指数函数等;
  • 当方程组里面某个方程${{P}_{i}}(x)=0$比较重要时,可以通过加权值${{w}_{i}}$:(局部加权回归)

$\operatorname{minimize}\text{  }f(x)=\sum\limits_{i=1}^{n}{{{w}_{i}}{{P}_{i}}^{2}(x)}\text{         }{{\text{w}}_{i}}>0$

  • 可以通过调整权值系数,让误差平分到每个方程上面。

2、在讨论无约束优化(Unconstrained Optimization)之前,先介绍几个基本符号:

  • 梯度:gradient (vector)

$\nabla f=\left[ \begin{aligned}& \frac{\partial f}{\partial {{x}_{1}}} \\& \frac{\partial f}{\partial {{x}_{2}}} \\& \vdots  \\& \frac{\partial f}{\partial {{x}_{n}}} \\\end{aligned} \right]$

  • 海森矩阵: Hessian (matrix)

\[H(x)={{\nabla }^{2}}f(x)=\nabla ({{\nabla }^{T}}f(x))=\left[ \begin{matrix}\frac{{{\partial }^{2}}f}{\partial x_{1}^{2}} & \frac{{{\partial }^{2}}f}{\partial {{x}_{1}}\partial {{x}_{2}}} & \cdots  & \frac{{{\partial }^{2}}f}{\partial {{x}_{1}}\partial {{x}_{n}}}  \\\frac{{{\partial }^{2}}f}{\partial{{x}_{2}}\partial {{x}_{1}}} & \frac{{{\partial }^{2}}f}{\partial x_{2}^{2}} & \cdots  & \frac{{{\partial }^{2}}f}{\partial {{x}_{2}}\partial {{x}_{n}}}  \\\vdots  & \vdots  & \ddots  & \vdots   \\\frac{{{\partial }^{2}}f}{\partial {{x}_{n}}\partial {{x}_{1}}} & \frac{{{\partial }^{2}}f}{\partial{{x}_{n}}\partial {{x}_{2}}} & \cdots  & \frac{{{\partial }^{2}}f}{\partial x_{n}^{2}}  \\\end{matrix} \right]\]

对于多元函数的极值问题,按照前面讲的,有如下步骤:

1.找出一阶偏导数等于0的点——驻点(极大值点、极小值点、拐点),即:

$\nabla f=0\text{    }\leftrightarrow \text{    }\left\{ \begin{aligned}& \frac{\partial f}{\partial {{x}_{1}}}=0 \\& \frac{\partial f}{\partial {{x}_{2}}}=0 \\& \vdots  \\& \frac{\partial f}{\partial {{x}_{n}}}=0 \\\end{aligned} \right.\text{ }$

2.接着通过二阶偏导数判断其是否为极值点,是极大值还是极小值点;多元函数的二阶偏导数用Hessian matrix表示,将stepa中得到的驻点代入,Hessian matrix中与极值有如下关系:

数学基础知识补充:

  • 实对称阵:的所有特征值都是实的;
  • 正定阵:所有特征值都大于0的方阵;
  • 半正定阵:所有特征值大于或等于0的方阵;

这里差一个证明,为什么Hessian矩阵的特征值大于0,该点为极小值?(下一部分中有说明)

01(b)无约束优化(准备知识)的更多相关文章

  1. 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)

    本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...

  2. MATLAB进行无约束优化

    首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...

  3. 02(c)多元无约束优化问题-牛顿法

    此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ ...

  4. 02(b)多元无约束优化问题-最速下降法

    此部分内容接02(a)多元无约束优化问题的内容! 第一类:最速下降法(Steepest descent method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta }) ...

  5. 02(a)多元无约束优化问题

    2.1 基本优化问题 $\operatorname{minimize}\text{    }f(x)\text{       for   }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...

  6. 02(d)多元无约束优化问题-拟牛顿法

    此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...

  7. 02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题

    2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\pa ...

  8. 082 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 01 构造方法-无参构造方法

    082 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 02 构造方法介绍 01 构造方法-无参构造方法 本文知识点:构造方法-无参构造方法 说明:因为时间紧张, ...

  9. 01网络编程(基础知识+OSI七层协议+TCP与UDP)

    目录 01 网络编程 一.软件开发架构 1.1 CS架构 1.2 BS架构 二.网络理论前戏 2.1 简介 2.2 常见硬件 三.OSI七层协议(五层) 3.1 七层协议 3.2 五层协议 3.3 知 ...

随机推荐

  1. ORACLE 时间加减操作

    DATE和timestamp类型都可以进行加减操作.可以对当前日期加年.月.日.时.分.秒,操作不同的时间类型,有三种方法: 1 使用内置函数numtodsinterval增加小时,分钟和秒2 加一个 ...

  2. Emgu-WPF学习使用-Rectangle识别

    原文:Emgu-WPF学习使用-Rectangle识别 环境:Win8 64位 Vs2015 Emgu 版本:emgucv-windesktop 3.2.0.2682 示例图上部流程:原图->灰 ...

  3. wpf怎么使用WindowsFormsHost(即winform控件)

    原文:wpf怎么使用WindowsFormsHost(即winform控件) 使用方法: 1.首先,我们需要向项目中的引用(reference)中添加两个动态库dll,一个是.NET库中的System ...

  4. Delphi中的线程类 - TThread详解

    Delphi中的线程类 - TThread详解 2011年06月27日 星期一 20:28 Delphi中有一个线程类TThread是用来实现多线程编程的,这个绝大多数Delphi书藉都有说到,但基本 ...

  5. 设置InputBox等提示框的字体以及样式

    InputBox等窗体的字体大小设置方法 Graphics.DefFontData.Height:=48;  Graphics.DefFontData.Style:=[fsBold,fsItalic, ...

  6. Win8 Metro(C#)数字图像处理--2.40二值图像轮廓提取算法

    原文:Win8 Metro(C#)数字图像处理--2.40二值图像轮廓提取算法  [函数名称]   二值图像轮廓提取         ContourExtraction(WriteableBitm ...

  7. Android 动画基础——视图动画(View Animation)

    本篇讲android 3.0之前被广泛的动画框架——ViewAnimation. 目录 我将分为六部分来讲: 概述 Alpha透明动画 Rotate旋转动画 Translate位移动画 Scale放缩 ...

  8. chrome 浏览器的常用命令收录

    chrome://settings(设置) chrome://extensions(扩展程序) chrome://history(历史记录) chrome://settings/clearBrowse ...

  9. 【备忘】C#语言基础-2

    泛型 CollectionClass<ItemClass> items = new CollectionClass<ItemClass>(); items.Add(new It ...

  10. 为什么需要使用Git客户端?(使用msysgit)

    Git 是 Linux Torvalds 为了帮助管理 Linux® 内核开发而开发的一个开放源码的版本控制软件.正如所提供的文档中说的一样,“Git 是一个快速.可扩展的分布式版本控制系统,它具有极 ...