传送门

题意:

给出一颗树,每个结点有取值范围\([1,D]\)。

现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值。

问有多少种取值方案。

思路:

  • 手画一下发现,对于一颗大小为\(sz\)的数,最终的答案为一个\(sz+1\)次为最高次幂的多项式。
  • 因为节点数\(n\leq 3000\),所以暴力求出后插值即可。

简略证明:对于一个链,显然,一个长度为\(x\)的链,最终的结果为\(x+1\)次的多项式;考虑两条链的合并:长度为\(x\)的链和长度为\(y\)的链,显然两者相乘最终为\(x+y+2\)次的多项式,因为合并过后会多一个父节点,那么就是有\(x+y+1\)个点。

归纳一下就有上面说的结论了。

代码如下:

/*
* Author: heyuhhh
* Created Time: 2019/11/18 20:20:04
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 3005, MOD = 1e9 + 7; ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
} int n, D; vector <int> g[N];
int res[N];
int pre[N][N]; void dfs(int u, int fa) {
int son = 0;
for(auto v : g[u]) if(v != fa) {
dfs(v, u); ++son;
}
if(!son) {
for(int i = 1; i <= n; i++) pre[u][i] = i;
} else {
for(int i = 1; i <= n; i++) res[i] = 1;
for(auto v : g[u]) if(v != fa) {
for(int i = 1; i <= n; i++) res[i] = 1ll * res[i] * pre[v][i] % MOD;
}
for(int i = 1; i <= n; i++) pre[u][i] = (pre[u][i - 1] + res[i]) % MOD;
}
} struct Lagrange {
static const int SIZE = 3005;
ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
int n;
inline void add(ll &x, int y) {
x += y;
if(x >= MOD) x -= MOD;
}
void init(int _n) {
n = _n;
fac[0] = 1;
for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;
inv[SIZE - 1] = qpow(fac[SIZE - 1], MOD - 2);
for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
f[0] = 0;
}
ll calc(ll x) {
if (x <= n) return f[x];
pre[0] = x % MOD;
for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
suf[n] = (x - n) % MOD;
for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
ll res = 0;
for (int i = 0; i <= n; ++i) {
ll tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
if (i) tmp = tmp * pre[i - 1] % MOD;
if (i < n) tmp = tmp * suf[i + 1] % MOD;
if ((n - i) & 1) tmp = MOD - tmp;
add(res, tmp);
}
return res;
}
}lagrange; void run(){
for(int i = 2; i <= n; i++) {
int x; cin >> x;
g[i].push_back(x);
g[x].push_back(i);
}
lagrange.init(n);
dfs(1, 0);
for(int i = 1; i <= n; i++) lagrange.f[i] = pre[1][i];
int ans = lagrange.calc(D);
cout << ans;
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> D) run();
return 0;
}

【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)的更多相关文章

  1. Codeforces F. Cowmpany Cowmpensation

    Description 有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值. n<=3000,D<=1e9 题面 Solution ...

  2. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

  3. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  4. CF 622 F The Sum of the k-th Powers —— 拉格朗日插值

    题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...

  5. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  6. 【CF995F】 Cowmpany Cowmpensation

    CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...

  7. 拉格朗日插值优化DP

    拉格朗日插值优化DP 模拟赛出现神秘插值,太难啦!! 回忆拉格朗日插值是用来做什么的 对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到 \[F ...

  8. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  9. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

随机推荐

  1. 并发编程~~~多线程~~~守护线程, 互斥锁, 死锁现象与递归锁, 信号量 (Semaphore), GIL全局解释器锁

    一 守护线程 from threading import Thread import time def foo(): print(123) time.sleep(1) print('end123') ...

  2. Django2.1集成xadmin管理后台所遇到的错误集锦,解决填坑(二)

    django默认是有一个admin的后台管理模块,但是丑,功能也不齐全,但是大神给我们已经集成好了xadmin后台,我们拿来用即可,但是呢,django已经升级到2.1版本了,xadmin貌似跟不上节 ...

  3. Django-xadmin后台配置富文本编辑器(方法一)

    1.https://github.com/twz915/DjangoUeditor3下载包,进入包文件夹,找到DjangoUeditor包拷贝到项目下,和xadmin同级目录 2.找到项目的setti ...

  4. Linux和Windows的区别

    1. 软件与支持 • Windows 平台:数量和质量的优势,不过大部分为收费软件:由微软官方提供重要支持和服务: • Linux 平台:大都为开源自由软件,用户可以修改定制和再发布,由于基本免费没有 ...

  5. busybox启动流程简单解析:从init到shell login

    关键词:kernel_init().init.inittab.wait/waitpid.fork/vfork.setsid().execvp/execlp.dup2等等. 由于遇到一系列定制,从ini ...

  6. HTML5应用 转 Android、Windows Phone 应用

    一.HTML5 转 Android 目标SDK:API 20 1.新建一个 Blank Activity 的应用 2.在 AndroidManifest.xml 文件中添加联网权限 <uses- ...

  7. SPA项目开发之登录

    前端 首先安装开发模板 npm install element-ui -S npm install axios -S npm install qs -S npm install vue-axios - ...

  8. 【cf1272】F. Two Bracket Sequences

    传送门 题意: 给出\(s,t\)两个合法括号序列,现在找到一个长度最小的合法的序列\(p\),使得\(s,t\)都为其子序列. 思路: 考虑\(dp:dp[i][j][d]\)表示第一个串在\(i\ ...

  9. 使用php开发,基于swoole扩展开发的工具 swoole-crontab 作业/任务调度

    Swoole-Crontab(基于Swoole扩展) 1.概述 基于swoole的定时器程序,支持秒级处理. 异步多进程处理. 完全兼容crontab语法,且支持秒的配置,可使用数组规定好精确操作时间 ...

  10. swoole中http_server的配置与使用

    swoole中为我们提供了一个swoole_http_server类,方便我们处理http请求. 但是它对http协议的支持并不完整,所以一般建议在前面加一层nginx进行代理,对于php文件的处理交 ...