传送门

题意:

给出一颗树,每个结点有取值范围\([1,D]\)。

现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值。

问有多少种取值方案。

思路:

  • 手画一下发现,对于一颗大小为\(sz\)的数,最终的答案为一个\(sz+1\)次为最高次幂的多项式。
  • 因为节点数\(n\leq 3000\),所以暴力求出后插值即可。

简略证明:对于一个链,显然,一个长度为\(x\)的链,最终的结果为\(x+1\)次的多项式;考虑两条链的合并:长度为\(x\)的链和长度为\(y\)的链,显然两者相乘最终为\(x+y+2\)次的多项式,因为合并过后会多一个父节点,那么就是有\(x+y+1\)个点。

归纳一下就有上面说的结论了。

代码如下:

/*
* Author: heyuhhh
* Created Time: 2019/11/18 20:20:04
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 3005, MOD = 1e9 + 7; ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
} int n, D; vector <int> g[N];
int res[N];
int pre[N][N]; void dfs(int u, int fa) {
int son = 0;
for(auto v : g[u]) if(v != fa) {
dfs(v, u); ++son;
}
if(!son) {
for(int i = 1; i <= n; i++) pre[u][i] = i;
} else {
for(int i = 1; i <= n; i++) res[i] = 1;
for(auto v : g[u]) if(v != fa) {
for(int i = 1; i <= n; i++) res[i] = 1ll * res[i] * pre[v][i] % MOD;
}
for(int i = 1; i <= n; i++) pre[u][i] = (pre[u][i - 1] + res[i]) % MOD;
}
} struct Lagrange {
static const int SIZE = 3005;
ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
int n;
inline void add(ll &x, int y) {
x += y;
if(x >= MOD) x -= MOD;
}
void init(int _n) {
n = _n;
fac[0] = 1;
for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;
inv[SIZE - 1] = qpow(fac[SIZE - 1], MOD - 2);
for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
f[0] = 0;
}
ll calc(ll x) {
if (x <= n) return f[x];
pre[0] = x % MOD;
for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
suf[n] = (x - n) % MOD;
for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
ll res = 0;
for (int i = 0; i <= n; ++i) {
ll tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
if (i) tmp = tmp * pre[i - 1] % MOD;
if (i < n) tmp = tmp * suf[i + 1] % MOD;
if ((n - i) & 1) tmp = MOD - tmp;
add(res, tmp);
}
return res;
}
}lagrange; void run(){
for(int i = 2; i <= n; i++) {
int x; cin >> x;
g[i].push_back(x);
g[x].push_back(i);
}
lagrange.init(n);
dfs(1, 0);
for(int i = 1; i <= n; i++) lagrange.f[i] = pre[1][i];
int ans = lagrange.calc(D);
cout << ans;
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> D) run();
return 0;
}

【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)的更多相关文章

  1. Codeforces F. Cowmpany Cowmpensation

    Description 有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值. n<=3000,D<=1e9 题面 Solution ...

  2. F. Cowmpany Cowmpensation dp+拉格朗日插值

    题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...

  3. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  4. CF 622 F The Sum of the k-th Powers —— 拉格朗日插值

    题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...

  5. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  6. 【CF995F】 Cowmpany Cowmpensation

    CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...

  7. 拉格朗日插值优化DP

    拉格朗日插值优化DP 模拟赛出现神秘插值,太难啦!! 回忆拉格朗日插值是用来做什么的 对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到 \[F ...

  8. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  9. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

随机推荐

  1. docker 日常操作(会更新)

    搜索镜像 1,命令行中所有命令搜索 docker search centos 2,在官网中搜索镜像 下载镜像 docker pull centos centos后要加:[版本号],如果没有就默认下载l ...

  2. GO 使用静态链接库编译 生成可执行文件 使用第三方 .a 文件,无源码构造

    go build 和 go install 都需要使用源码来进行编译.但是有时候我们只有.a或者.so文件.并不能获取到第三方库的源码,这时我们需要静态链接库编译的技巧: 上图是实验前的文件分布. 使 ...

  3. NXP_RTCESL库

    恩智浦实时控制嵌入式软件库(缩写为RTCESL,以前为恩智浦嵌入式软件库FSLESL)是一组算法,从基础数学运算到高级数学变换以及高级观测器,这些都可以方便地用在复杂的实时控制应用中以及我们的电机控制 ...

  4. vue踩坑--细节决定成败

    1.错误示例 . 2.错误的地方 3.修改后代码 4.错误分析

  5. Day11 - Python基础11 模块学习——optparse

    Python 有两个内建的模块用于处理命令行参数: 一个是 getopt,<Deep in python>一书中也有提到,只能简单处理 命令行参数: 另一个是 optparse,它功能强大 ...

  6. 浅谈vue中的计算属性和侦听属性

    计算属性 计算属性用于处理复杂的业务逻辑 计算属性具有依赖性,计算属性依赖 data中的初始值,只有当初始值改变的时候,计算属性才会再次计算 计算属性一般书写为一个函数,返回了一个值,这个值具有依赖性 ...

  7. 4.P1产品经理该如何学习提升

    0经验.想转型 对于想转型或者没有经验的人,这部分同学你肯定对产品本身有一定的了解了,但是在这个时候转型最痛苦的是你要从原来的工作转到一个新的工作中的时候,要回到一个原点.比如你是原来是做开发的,那么 ...

  8. 人生苦短?试试Groovy进行单元测试

    如果您今天正在编程,那么您很可能听说过单元测试或测试驱动的开发过程.我还没有遇到一个既没有听说过又没有听说过单元测试并不重要的程序员.在随意的讨论中,大多数程序员似乎认为单元测试非常重要. 但是,当我 ...

  9. 【linux】linux命令lsof和grep命令的配合使用---linux根据端口查看PID,根据PID关键字高亮显示

    lsof命令,根据端口,查看进程PID lsof -i: ps命令+grep命令 --color参数,根据PID查看进程详情,高亮显示关键字 ps -ef | grep --color=always

  10. Newtonsoft.Json 序列化踩坑之 IEnumerable

    Newtonsoft.Json 序列化踩坑之 IEnumerable Intro Newtonsoft.Json 是 .NET 下最受欢迎 JSON 操作库,使用起来也是非常方便,有时候也可能会不小心 ...