luoguP4151 [WC2011]最大XOR和路径
题意
这题有点神啊。
首先考虑注意这句话:
路径可以重复经过某些点或边,当一条边在路径中出现了多次时,其权值在计算 XOR 和时也要被计算相应多的次数
也就是说如果出现下面的情况:
我们可以通过异或上这个环的权值而不异或上\(w\),于是这启示我们答案必定是一条链带上好几个环。
现在考虑选哪条\(1\)到\(n\)链:
其实任意选一条即可,见下图:
假设我们选了红的那条,而答案是选蓝色的那条,那么显然可以通过异或上这个环(都是\(1->n\)的路径,必然是环)使得当前值变为选蓝色那条。
dfs出一条链,将所有环插入线性基,求最大子集异或和。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=50010;
const int maxm=100010;
int n,m,cnt;
int head[maxn];
ll xord[65],sum[maxn];
bool vis[maxn];
struct edge{int to,nxt;ll dis;}e[maxm<<1];
inline ll read()
{
char c=getchar();ll res=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
return res*f;
}
inline void add(int u,int v,ll w)
{
e[++cnt].nxt=head[u];
head[u]=cnt;
e[cnt].to=v;
e[cnt].dis=w;
}
inline void insert(ll x)
{
for(int i=61;~i;i--)
{
if(!(x&(1ll<<i)))continue;
if(!xord[i]){xord[i]=x;break;}
else x^=xord[i];
}
}
inline ll query(ll x)
{
ll res=x;
for(int i=61;~i;i--)if((res^xord[i])>res)res^=xord[i];
return res;
}
void dfs(int x,ll res)
{
vis[x]=1;sum[x]=res;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(!vis[y])dfs(y,res^e[i].dis);
else insert(res^sum[y]^e[i].dis);
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read();ll w=read();
add(u,v,w),add(v,u,w);
}
dfs(1,0);
printf("%lld",query(sum[n]));
return 0;
}
luoguP4151 [WC2011]最大XOR和路径的更多相关文章
- 洛谷 P4151 [WC2011]最大XOR和路径 解题报告
P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...
- [WC2011]最大XOR和路径 线性基
[WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...
- P4151 [WC2011]最大XOR和路径
P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...
- [WC2011]最大XOR和路径(线性基)
P4151 [WC2011]最大XOR和路径 题目描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如下( 1 表示真, 0 表 ...
- 题解-[WC2011]最大XOR和路径
[WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...
- 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]
题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...
- 洛谷 P4151 BZOJ 2115 [WC2011]最大XOR和路径
//bzoj上的题面太丑了,导致VJ的题面也很丑,于是这题用洛谷的题面 题面描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如 ...
- [WC2011]最大XOR和路径(贪心+线性基)
题目大意:给一张无向图,求一条1-n的路径,是路径边权的异或和最小. 题解 这道题的思路很妙,首先我们可以随便找出一条从1到n的路径来,然后我们可以选一些环. 其实不管这个环和这条路径有怎样的关系,我 ...
- [WC2011]最大XOR和路径
嘟嘟嘟 不愧是WC的题,思维真的很妙(虽然代码特别简单). 首先暴力找出所有路径肯定不行. 题中说可以经过重复的边,并且边权也会被计算多次.那么就是说,如果经过一条边再沿这条边回来,这条边的贡献就是0 ...
随机推荐
- 201871010109-胡欢欢《面向对象程序设计(java)》第一周学习总结
<面向对象程序设计(java)>第一周学习总结 正文开头: 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 ...
- CometOJ10C 鱼跃龙门
题目链接 problem 实际上就是对于给定的\(n\)求一个最小的\(x\)满足\(\frac{x(x+1)}{2}=kn(k\in N^*)\). solution 对上面的式子稍微变形可得\(x ...
- Eclipse Memory Analyzer(MAT),内存泄漏插件,安装使用一条龙
网上文档很多,但最初都有问题.整理一份,作为备份.使用过程:开发代码写完后,对可能出现内存溢出的代码,添加配置文件,生成.hprof文件,用memory Analyzer分析排查问题,且泄漏内存大小可 ...
- java之获取变量的类型
java要获取变量的类型必须自己定义一个函数: public class Test{ public static void main(String[] args) { short a = 1; a + ...
- PHP递归函数return返回null的问题
前段时间在写递归函数的时候碰到个问题,返回值一直为null,这里记录一下. 写个小例子: /** * @param $i * @return mixed */ function recursion($ ...
- ubuntu 18.04 安装mysql 遇到语言格式不兼容性问题解决
安装mysql的时候,遇到了这样一个错误:perl: warning: Setting locale failed. perl: warning: Please check that your loc ...
- ubuntu18.04 中个性化配置vim方法
1:新建配置文件 在终端里输入:vi ~/.vimrc (vimrc是vim的配置文件,每次打开vim时会自动加载这个文件里的配置) 2:配置的代码如下:直接就可以复制到里面然后保存就行 set ai ...
- Python爬取6271家死亡公司数据,一眼看尽十年创业公司消亡史!
小五利用python将其中的死亡公司数据爬取下来,借此来观察最近十年创业公司消亡史. 获取数据 F12,Network查看异步请求XHR,翻页. 成功找到返回json格式数据的url, 很多人 ...
- 【STM32H7教程】第26章 STM32H7的TCM,SRAM等五块内存的超方便使用方式
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第26章 STM32H7的TCM,SRAM等五块 ...
- SpringBoot系列之日志框架介绍及其原理简介
SpringBoot系列之日志框架介绍及其原理简介 1.常用日志框架简介 市面上常用日志框架:JUL.JCL.jboss-logging.logback.log4j.log4j2.slf4j.etc. ...