要弄清楚这个问题,我们得先认识一个人。古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家、医生、几何学家、立法家和地理学家。

为何我们把 x²读作x平方呢?

古希腊时代,越来越多的无理数(不可公度比)的发现迫使希腊人不得不研究这些数。它们确实是数吗?它们出现于集合论证过程中,而整数和整数之比则既出现于几何也出现于一般的数量研究中。用于可公度的长度、面积和体积的几何证明,怎样才能推广用之于不可公度的这些量呢?

欧多克索斯引入了变量这个概念。量跟数不同,数是从一个跳到另一个,例如从3跳到4。量是不指定数值的。然后欧多克索斯定义两个量之比并定义比例,把可公度比与不可公度比都包含在内。但他仍不用数表达这种比。比和比例的概念是同几何学分开的。

欧多克索斯所做的这项工作是为了避免把无理数当做数。实际上,他连线段长度、角的大小及其他的量和量的比,都避免给予数值。这个理论给不可公度比提供了逻辑依据,从而使希腊数学家大大推进了几何学,但也产生了一些不幸的后果。

这种后果之一就是它硬把数学同几何截然分开,因为只有集合能处理不可公度比。它也把数学家赶到几何学家的队伍里去,因为在此后两千年间几何学变成几乎是全部严密数学的基础。

我们如今仍把x²读作x平方,把x³读作x立方,而不是读作x二次或x三次,因为对古希腊人来说,x²和x³这些量只有几何意义。

参考文献:

1. 《古今数学思想》

写在后面

本文地址:http://www.cnblogs.com/kelsen/p/6056663.html

关于本文如果您有任何建议或疑问请在下面留言交流,也可通过 Web前端高级工程师 群进行线上沟通。

数学思想:为何我们把 x²读作x平方的更多相关文章

  1. Z可读作zed的出处?

    Commercial and international telephone and radiotelephone SPELLING ALPHABETS between World War I and ...

  2. HDU 4635 Strongly connected(强连通分量缩点+数学思想)

    题意:给出一个图,如果这个图一开始就不是强连通图,求出最多加多少条边使这个图还能保持非强连通图的性质. 思路:不难想到缩点转化为完全图,然后找把它变成非强连通图需要去掉多少条边,但是应该怎么处理呢…… ...

  3. 数学思想方法-分布式计算-linux/unix技术基础(3)

    夹: ~表示当前用户的主文件夹 .它代表了当前文件夹 ..它代表的父文件夹 链接文件 使用不同的文件名指的是相同的数据或程序.硬链接 在相同的物理文件系统,创建一个硬链接 -bash-4.2$ fin ...

  4. 数学沉思录:古今数学思想的发展与演变 (Mario Livio 著)

    第1章 神秘的数学 (已看) 发现还是发明 第2章 神秘学:命理学家和哲学家 (已看) 毕达哥拉斯 进入柏拉图的洞穴 第3章 魔法师:大师和异端 (已看) 给我一个支点:我将撬起地球 阿基米德重写稿 ...

  5. 数学思想方法-分布式计算-linux/unix技术基础(5)

    shell命令行参数 -bash-4.2$ cat test1.sh#!/bin/shecho "$0  "echo "$1  "echo "$2   ...

  6. 数学思想方法-sasMEMO(17)

    SAS日期及时间格式 data  _null_;input mydate YYMMDD10.;put mydate YYMMDDB10.;put mydate YYMMDDC10.;put mydat ...

  7. UVA 1393 Highways(数学思想)

    题意:给你n.m(n,m<=200),问你有多少条非水平.非垂直的直线有多少条经过至少两个点 题解:我们需要枚举的是只画一条线的矩形,对于大小a*b的矩形必须保证gcd(a,b)=1才能不重复 ...

  8. 数学思想方法-python计算战(8)-机器视觉-二值化

    二值化 hreshold Applies a fixed-level threshold to each array element. C++: double threshold(InputArray ...

  9. Codeforces Round #383 (Div. 2) C. Arpa's loud Owf and Mehrdad's evil plan(dfs+数学思想)

    题目链接:http://codeforces.com/contest/742/problem/C 题意:题目比较难理解,起码我是理解了好久,就是给你n个位置每个位置标着一个数表示这个位置下一步能到哪个 ...

随机推荐

  1. iOS总结_UI层自我复习总结

    UI层复习笔记 在main文件中,UIApplicationMain函数一共做了三件事 根据第三个参数创建了一个应用程序对象 默认写nil,即创建的是UIApplication类型的对象,此对象看成是 ...

  2. Scrapy框架爬虫初探——中关村在线手机参数数据爬取

    关于Scrapy如何安装部署的文章已经相当多了,但是网上实战的例子还不是很多,近来正好在学习该爬虫框架,就简单写了个Spider Demo来实践.作为硬件数码控,我选择了经常光顾的中关村在线的手机页面 ...

  3. 【原创分享·支付宝支付】HBuilder打包APP调用支付宝客户端支付

    前言 最近有点空余时间,所以,就研究了一下APP支付.前面很早就搞完APP的微信支付了,但是由于时间上和应用上的情况,支付宝一直没空去研究.然后等我空了的时候,发现支付宝居然升级了支付逻辑,虽然目前还 ...

  4. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  5. 在docker中运行ASP.NET Core Web API应用程序(附AWS Windows Server 2016 widt Container实战案例)

    环境准备 1.亚马逊EC2 Windows Server 2016 with Container 2.Visual Studio 2015 Enterprise(Profresianal要装Updat ...

  6. CoreCRM 开发实录——开始之新项目的技术选择

    2016年11月,接受了一个工作,是对"悟空CRM"进行一些修补.这是一个不错的 CRM,开源,并提供一个 SaaS 的服务.正好微软的 .NET Core 和 ASP.NET C ...

  7. Android数据加密之异或加密算法

    前言: 这几天被公司临时拉到去做Android IM即时通信协议实现,大致看了下他们定的协议,由于之前没有参与,据说因服务器性能限制,只达成非明文传递,具体原因我不太清楚,不过这里用的加密方式是采用异 ...

  8. 免费开源的DotNet二维码操作组件ThoughtWorks.QRCode(.NET组件介绍之四)

    在生活中有一种东西几乎已经快要成为我们的另一个电子”身份证“,那就是二维码.无论是在软件开发的过程中,还是在普通用户的日常中,几乎都离不开二维码.二维码 (dimensional barcode) , ...

  9. await and async

    Most people have already heard about the new “async” and “await” functionality coming in Visual Stud ...

  10. 使用RequireJS并实现一个自己的模块加载器 (一)

    RequireJS & SeaJS 在 模块化开发 开发以前,都是直接在页面上引入 script 标签来引用脚本的,当项目变得比较复杂,就会带来很多问题. JS项目中的依赖只有通过引入JS的顺 ...