[bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面
设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij)
N<=109N<=10^9N<=109
题目分析
有这样一个结论
d(ij)=∑x∣i∑y∣j[(x,y)==1]d(ij)=\sum_{x|i}\sum_{y|j}[(x,y)==1]d(ij)=x∣i∑y∣j∑[(x,y)==1]这道题就是下面这道题的数据增强版,那么这个结论的证明就不再赘述,请自行查看下面的(蒟蒻)博客 传送门:[SDOI2015][bzoj 3994][Luogu P3327] 约数个数和
Ans=∑k=1Nμ(k)(∑x=1⌊Nk⌋⌊Nkx⌋)2\large Ans=\sum_{k=1}^N\mu(k)\left(\sum_{x=1}^{⌊\frac{N}{k}⌋}⌊\frac{N}{kx}⌋\right)^2Ans=k=1∑Nμ(k)⎝⎜⎛x=1∑⌊kN⌋⌊kxN⌋⎠⎟⎞2
由于数据范围的增强,我们不能预处理完整个10910^9109,于是就外层整除分块优化
- 内层杜教筛来算μ\muμ的前缀和,时间复杂度为Θ(N23)\Theta (N^{\frac 23})Θ(N32)
- 后面平方的底数实际上等于[1,⌊Nk⌋]\left[1,⌊\frac{N}{k}⌋\right][1,⌊kN⌋]的约数个数和的前缀和,可以直接Θ(⌊Nk⌋)\Theta(\sqrt {⌊\frac{N}{k}⌋})Θ(⌊kN⌋)算,预处理出前N23N^{\frac23}N32的约数个数和的前缀和后,总时间复杂度就如杜教筛一样为Θ(N23)\Theta(N^\frac 23)Θ(N32)
总时间复杂度为Θ(N23)\Theta (N^{\frac 23})Θ(N32)
AC code
#include <cstdio>
#include <algorithm>
#include <map>
using namespace std;
typedef long long LL;
const int N = 1e6 + 1;
const int mod = 1e9 + 7;
int Cnt, Prime[N], mu[N], d[N], a[N]; //a[i]存的是i的最小质因数的次数+1
bool IsnotPrime[N];
void init()
{
mu[1] = d[1] = a[1] = 1;
for(int i = 2; i < N; ++i)
{
if(!IsnotPrime[i])
Prime[++Cnt] = i, mu[i] = -1, a[i] = d[i] = 2;
for(int j = 1; j <= Cnt && i * Prime[j] < N; ++j)
{
IsnotPrime[i * Prime[j]] = 1;
if(i % Prime[j] == 0)
{
mu[i * Prime[j]] = 0;
d[i * Prime[j]] = d[i] / a[i] * (a[i * Prime[j]] = a[i] + 1);
break;
}
mu[i * Prime[j]] = -mu[i];
d[i * Prime[j]] = d[i] * (a[i * Prime[j]] = 2);
}
}
for(int i = 1; i < N; ++i)
(d[i] += d[i-1]) %= mod, (mu[i] += mu[i-1]) %= mod;
}
inline int sum_d(int n) //约数个数和的前缀和,也就是后面个平方的底数
{
if(n < N) return d[n];
int ret = 0;
for(int i = 1, j; i <= n; i=j+1)
{
j = n/(n/i);
ret = (ret + (LL)(n/i) * (j-i+1) % mod) % mod;
}
return ret;
}
map<int, int>s;
inline int sum_mu(int n)
{
if(n < N) return mu[n];
if(s.count(n)) return s[n];
int ret = 1;
for(int i = 2, j; i <= n; i=j+1)
{
j = n/(n/i);
ret = (ret - (LL)sum_mu(n/i)*(j-i+1)%mod) % mod;
}
return s[n]=ret;
}
int solve(int n)
{
int ret = 0, last = 0, tmp, tmp2;
for(int i = 1, j; i <= n; i=j+1)
{
j = n/(n/i);
tmp = sum_mu(j), tmp2 = sum_d(n/i), tmp2 = (LL)tmp2 * tmp2 % mod;
//tmp2存后面那个平方的值
ret = (ret + (LL)((tmp-last) % mod) * tmp2 % mod) % mod;
last = tmp;//这利用了一个小优化,本来是sum_mu(j)-sum_mu(i-1),
//我们把sum_mu(i-1)的值存下来,就少计算一次,last存上一次答案
//然而我后来看发现这优化并没有什么卵用,本来就记忆化了...
}
return ret;
}
int main ()
{
init(); int n;
scanf("%d", &n);
printf("%d\n", (solve(n)+mod)%mod);
}
.
.
.
少有的一A
二刷:bzoj rank 7
CODE
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1000005;
const int mod = 1e9 + 7;
int prime[MAXN/10], cnt, mu[MAXN], d[MAXN], a[MAXN];
bool vis[MAXN];
inline void Pre_Work(int n) {
mu[1] = d[1] = a[1] = 1;
for(int i = 2; i <= n; ++i) {
if(!vis[i])
prime[++cnt] = i, mu[i] = -1, d[i] = a[i] = 2;
for(int j = 1; j <= cnt && i*prime[j] <= n; ++j) {
vis[i*prime[j]] = 1;
if(i % prime[j] == 0) {
mu[i*prime[j]] = 0;
d[i*prime[j]] = d[i] / a[i] * (a[i*prime[j]] = a[i]+1);
break;
}
mu[i*prime[j]] = -mu[i];
d[i*prime[j]] = d[i] * (a[i*prime[j]] = 2);
}
}
for(int i = 2; i <= n; ++i)
mu[i] += mu[i-1], (d[i] += d[i-1]) %= mod;
}
map<int, int>MU;
inline int sum_mu(int n) {
if(n < MAXN) return mu[n];
if(MU.count(n)) return MU[n];
int re = 1;
for(int i = 2, j; i <= n; i = j+1) {
j = n/(n/i);
re = (re - 1ll * (j-i+1) * sum_mu(n/i) % mod) % mod;
}
return MU[n]=re;
}
map<int, int>D;
inline int sum_d(int n) {
if(n < MAXN) return d[n];
if(D.count(n)) return D[n];
int re = 0;
for(int i = 1, j; i <= n; i = j+1) {
j = n/(n/i);
re = (re + 1ll * (j-i+1) * (n/i) % mod) % mod;
}
return D[n]=re;
}
inline int sqr(int x) { return 1ll*x*x%mod; }
inline int solve(int n) {
int re = 0;
for(int i = 1, j; i <= n; i = j+1) {
j = n/(n/i);
re = (re + 1ll * (sum_mu(j)-sum_mu(i-1)) % mod * sqr(sum_d(n/i)) % mod) % mod;
}
return re;
}
int main() {
int n;
scanf("%d", &n);
Pre_Work(min(n, MAXN-1));
printf("%d\n", (solve(n) + mod) % mod);
}
[bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)的更多相关文章
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
4176: Lucas的数论 Time Limit: 30 Sec Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...
- 【XSY2731】Div 数论 杜教筛 莫比乌斯反演
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...
- 【BZOJ4176】Lucas的数论-杜教筛
求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+ ...
- BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...
- bzoj4176. Lucas的数论 杜教筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^nd(ij),d是约数个数函数\) 题解:首先有一个结论\(d(ij)=\sum_{x|i}\sum_{y|j}[(i,j)==1]\) 那么 ...
- [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...
- [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...
- bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)
题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...
随机推荐
- 【Uiautomatorviewer】报错:Unexpected error while obtaining UI hierarchy java.lang.reflect.InvocationT...
android 9.0系统不能用uiautomator识别 解决方法:android 8.0 以后 uiautomator 无法直接使用的问题https://www.cnblogs.com/copyw ...
- 解决netty客户端接收报文不完整的情况
逻辑就是在处理handler前加入一个处理符,然后 channelReadComplete这个事件进行处理.同时注意客服端的配置: public void connect(String addr, i ...
- spring的exception
Springmvc的对于异常类进行统一处理的方法 一.局部异常统一处理 当异常出现时,将抛给异常处理方法,异常处理发放接收到异常数据,进行处理,统一到异常页面 @ExceptionHandler:通过 ...
- Android调试桥 adb安装详解
Android调试桥(adb) 一.简介 Android 调试桥 (adb) 是一种功能多样的命令行工具,可让您与设备进行通信.adb 命令便于执行各种设备操作(例如安装和调试应用),并提供对 Uni ...
- 使用SSM搭建一个简单的crud项目
使用SSM完成增删查改 前端使用到的技术:ajax,json,bootstrap等 完整项目地址:点这里GitHub 项目地址,可以在线访问 这一章节主要搭建SSM的环境. SpringMVC Spr ...
- 打家劫舍I
题目描述(LeetCode) 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系 ...
- server.port 在单元测试中,调用的类或者方法这个地方获取到的端口号就会变成-1
@Value("${server.port}") 本文链接:https://blog.csdn.net/weixin_38342534/article/details/886985 ...
- Mysql向新建表中插入数据, Incorrect string value: '\xE5\xBC\xA0\xE4\xB8\x89' for column 'UserName' at row 1
在本地通过MYSQL创建测试表 CREATE Table User ( UserId int not NULL PRIMARY KEY auto_increment, //主键自增 UserName ...
- spring Boot 学习(三、Spring Boot与检索)
一.检索我们的应用经常需要添加检索功能,开源的 ElasticSearch 是目前全文搜索引擎的 首选.他可以快速的存储.搜索和分析海量数据.Spring Boot通过整合Spring Data El ...
- C# 获取系统字体方法
//需要引用命名空间 using System.Drawing; using System.Drawing.Text; //获取系统字体方法 public dynamic GetFontNames() ...