题意

给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $i$ 到结点 $j$ 的最小距离。请输出每个结点的指标值。($n \leq 5000, k \leq 150$)

分析

一个常用的转化

$$n^k=\sum_{i=0}^{k}S(k,i) \times C(n,i) \times i!$$

证明可以考虑组合意义,等式的左边就是把 $k$ 个球放在 $n$ 个盒子里;右边就是枚举非空盒子的数量 $i$,注意到这里的盒子是不同的,所以还要乘上一个 $i!$。

利用上面写的那个常用的转化。令 $dp[i][j]=\sum\limits_{k=1}^{n}C(dist(i,k),j)$,那么答案为 $ans_i$就可以表示成 $ans_i=\sum\limits_{j=1}^{k}S(k,j) \times j! \times dp[i][j]$。注意到 $dp[i][j]$ 是组合数是可以直接转移的,具体如下:

From: 链接

#include<cstdio>
#include<iostream>
using namespace std;
int n,k,head[];
const int mod=;
struct edg{
int to,next;
}e[];
int S[][],mi[];
int size,fd[][],fu[][];
void add(int x,int y){size++;e[size]={y,head[x]};head[x]=size;}
void dfs1(int x,int fa)
{
fd[x][]=;
for (int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
if (y==fa) continue;
dfs1(y,x);
for (int j=;j<=k;j++)
{
if (j)
fd[x][j]=(fd[x][j]+fd[y][j]+fd[y][j-])%mod;
else fd[x][j]=(fd[x][j]+fd[y][j])%mod;
}
}
}
void dfs2(int x,int fa)
{
if (fa)
{
for (int i=;i<=k;i++)
{
if (i)
{
fu[x][i]=(fu[x][i]+fu[fa][i]+fu[fa][i-])%mod;
fu[x][i]=(fu[x][i]+fd[fa][i]+fd[fa][i-])%mod;
fu[x][i]=(fu[x][i]-(fd[x][i]+fd[x][i-])%mod+mod)%mod;
fu[x][i]=(fu[x][i]-fd[x][i-]+mod)%mod;
if (i>) fu[x][i]=(fu[x][i]-fd[x][i-]+mod)%mod;
}
else fu[x][]=n-fd[x][];
}
}
for (int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
if (y==fa) continue;
dfs2(y,x);
}
}
int main()
{
scanf("%d%d",&n,&k);
mi[]=;for (int i=;i<=k;i++) mi[i]=mi[i-]*i%mod;
S[][]=;
for (int i=;i<=k;i++)
for (int j=;j<=i;j++)
S[i][j]=(S[i-][j-]+j*S[i-][j])%mod;
for (int x,y,i=;i<n;i++)
scanf("%d%d",&x,&y),add(x,y),add(y,x);
dfs1(,);dfs2(,);
for (int i=;i<=n;i++)
{
int ans=;
for (int j=;j<=k;j++)
ans=(ans+1ll*S[k][j]*mi[j]*(fd[i][j]+fu[i][j]))%mod;
printf("%d\n",ans);
}
}

参考链接:

1. https://blog.csdn.net/Charlie_jilei/article/details/79922722

2. https://shichengxiao01.github.io/2018/02/17/第二类斯特林数小结

BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数的更多相关文章

  1. BZOJ2159 Crash的文明世界(树形dp+斯特林数)

    根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...

  2. BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】

    题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...

  3. [BZOJ2159]Crash的文明世界(斯特林数+树形DP)

    题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...

  4. BZOJ2159 Crash的文明世界

    Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...

  5. BZOJ2159 : Crash 的文明世界

    $x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...

  6. 题解 [BZOJ2159] Crash的文明世界

    题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...

  7. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  8. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  9. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

随机推荐

  1. 解决netty客户端接收报文不完整的情况

    逻辑就是在处理handler前加入一个处理符,然后 channelReadComplete这个事件进行处理.同时注意客服端的配置: public void connect(String addr, i ...

  2. Django框架深入了解_05 (Django中的缓存、Django解决跨域流程(非简单请求,简单请求)、自动生成接口文档)

    一.Django中的缓存: 前戏: 在动态网站中,用户所有的请求,服务器都会去数据库中进行相应的增,删,查,改,渲染模板,执行业务逻辑,最后生成用户看到的页面. 当一个网站的用户访问量很大的时候,每一 ...

  3. modbus汇总

    ModBus协议简介及移植到STM32单片机 https://blog.csdn.net/silent123go/article/details/92440091 Modbus测试工具ModbusPo ...

  4. 玩机之HUAWEI_Nova

    Nova是一款挺早的机型了.最开始使用华为就觉得这一款最好挺好用,屏幕小巧功能强大.当然也离不开手机,最早的TWRP就是在此机型上初步尝试成功,也算学习,那时候还没有玩过.这部手机算是改机最完美的一部 ...

  5. git 学习笔记 -- 创建标签

    在Git中打标签非常简单,首先,切换到需要打标签的分支上: $ git branch * dev master $ git checkout master Switched to branch 'ma ...

  6. js预编译环节 变量声明提升 函数声明整体提升

    预编译四部曲 1.创建AO对象 2.找形参和变量声明,将变量和形参名作为AO属性名,值为undefined 3.将实参和形参统一 4.在函数体里面找函数声明,值赋予函数体 function fn(a) ...

  7. iOS网络请求之数据解析

    JSON解析 IOS中Json解析的四种方法 NSURLConnection-网络请求浅析 IOS开发:官方自带的JSON使用 XML 解析 GDataXMLNode应用 IOS学习:常用第三方库(G ...

  8. IVS_技术

    视频监控技术按照设备发展过程分为三个阶段:模拟视频监控.数字视频监控.智能视频监控,如下图: 模拟视频监控 第一代视频监控系统也叫做闭路电视监控系统,简称CCTV(Close Circuit Tele ...

  9. 前端动态效果小结(jQuery)

    1.easyUI(jQuery) http://www.jeasyui.net/demo/954.html

  10. 【体系结构】有关Oracle SCN知识点的整理

    [体系结构]有关Oracle SCN知识点的整理 1  BLOG文档结构图   BLOG_Oracle_lhr_Oracle SCN的一点研究.pdf 2  前言部分 2.1  导读和注意事项 各位技 ...