转载:https://my.oschina.net/u/3627055/blog/2995973

背景

生产环境有二台阿里云服务器,均为同一时期购买的,CPU、内存、硬盘等配置相同。具体配置如下:

节点

CPU

内存

硬盘

其它

A

2CPU

4G

普通云盘

Centos6.4 64位+JDK1.8.0_121

B

2CPU

4G

普通云盘

Centos6.4 64位+JDK1.8.0_121

由于这二服务器硬件和软件配置相同,并且运行相同的程序,所以在Nginx轮询策略均weight=1,即平台的某个流量由这二台机器平分。

有一次对系统进行例行检查,使用PinPoint查看下服务器”Heap Usage”的使用情况时,发现在有一个系统Full GC非常频繁,大约五分钟一次Full GC,吓我一跳。

这么频繁的Full GC,导致系统暂停处理业务,对系统的实时可用性大打折扣。

我检查了一下Tomcat(Tomcat8.5.28)配置,发现在tomcat没有作任何关于JVM内存的设置,全部使用默认模式。

由于这二服务器硬件和软件配置相同,并且运行相同的程序,所以在Nginx轮询策略均weight=1,即平台的某个流量由这二台机器平分。

GC数据

在业务峰期间,通过PinPoint观察的A、B节点的”Heap Usage”使用情况,分别进行以下几个时间段数据。

3小时图:

上图B系统在三个小时内,一共发生了22次Full GC,大约每8分钟进行一次Full GC。

每次Full GC的时间大概有150ms左右,即B系统在三个小时内,大约有3300ms暂停系统运行。

从上图来看,堆的空间最大值在890M左右,但在堆空间的大小大约200M就发生Full GC了,从系统资源的利用角度来考虑,这个使用率太低了。

上图A系统在3个小时内,一共发生了0次Full GC,嗯,就是没有任何停顿。

在这3小时,系统一直在处理业务,没有停顿。堆的总空间大约1536m,目前堆的空间大于500M。

6小时图:

上图B系统在6个小时的数据统计和3个小时很像,6个小时内一共发生了N次Full GC,均是堆的空间小于200M就发生Full GC了。

上图A系统在6个小时内,一共发生了0次Full GC,表现优秀。

12小时

上图B系统在12个小时内,一共发生了N次Full GC,左边Full GC比较少,是因为我们的业务主要集中白天,虽然晚上属于非业务高峰期间,还是有Full GC。

上图A系统在12个小时内,一共发生了0次Full GC,表现优秀。

GC日志

看下gc.log文件,因为我们两台服务器都输出了gc的详细日志,先看下B系统的Full GC日志。

上图全部是” [Full GC (Ergonomics)”日志,是因为已经去掉” GC (Allocation Failure”日志,这样更方便观察和分析日志。

我们选取GC日志文件最后一条Full GC日志。

2018-12-24T15:52:11.402+0800: 447817.937: [Full GC (Ergonomics) [PSYoungGen: 480K->0K(20992K)] [ParOldGen: 89513K->69918K(89600K)] 89993K->69918K(110592K), [Metaspace: 50147K->50147K(1095680K)], 0.1519366 secs] [Times: user=0.21 sys=0.00, real=0.15 secs]

可以计算得到以下信息:

  • 堆的大小:110592K=108M

  • 老生代大小:89600K=87.5M

  • 新生代大小:20992K=20.5M

分析:这次Full GC是因为老年代对象占用的空间的大小已经超过老年代容量 引发的Full GC。

[ParOldGen: 89513K->69918K(89600K)]

究其原因,是因为分配给老年代的空间太小,远远不能满足系统对业务的需要。

这导致老年代的空间常常被占满,老年代的空间满了,导致Full GC。而由于老年代的空间比较小,所以每次Full GC的时间也比较短。

A系统日志,只有2次Full GC,这2次GC均发生在系统启动时:

7.765: [Full GC (Metadata GC Threshold) [PSYoungGen: 18010K->0K(458752K)] [ParOldGen: 15142K->25311K(1048576K)] 33153K->25311K(1507328K), [Metaspace: 34084K->34084K(1081344K)], 0.0843090 secs] [Times: user=0.14 sys=0.00, real=0.08 secs]

可以得到以下信息:

  • 堆的大小:1507328K=1472M

  • 老生代大小:89600K=1024M

  • 新生代大小:20992K=448M

分析:A系统只有系统启动才出现二次Full GC现象,而且是” Metadata GC Threshold”引起的,而不是堆空间引起的Full GC。

虽然经过一个星期的观察,A系统没有Full GC,但一旦发生Full GC时间则会比较长。

其它系统曾经发现过,1024M的老年代,Full GC持续的时间大约是90ms秒。

所以看得出来推也不是越大越好,或者说在UseParallelOldGC收集器中,堆的空间不是越大越好。

分析与优化

总体分析:

  • B系统的Full GC过于频繁,是因为老生代只有约108M空间,根本无法满足系统在高峰时期的内存空间需求

  • 由于ParOldGen(老年代)常常被耗尽,所以就发生Full GC事件了

  • A系统的堆初始空间(Xms)和堆的最大值(Xmx)均为1536m,完全可以满足业务高峰期的内存需求

优化策略:

  • B系统先增加堆空间大小,即通过设置Xms、 Xmx值增加堆空间。直接把Xms和Xmx均设置为1024M。

  • 堆的启动空间(Xms)直接设置为堆的最大值的原因是:因为直接把Xms设置为最大值(Xmx)可以避免JVM运行时不停的进行申请内存,而是直接在系统启动时就分配好了,从而提高系统的效率。

  • 把Xms(堆大小)设置为1024M,是因为采用JDK的建议,该建议通过命令得到:

    java -XX:+PrintCommandLineFlags -version

  • 综合下来的B系统的JVM参数设置如下:

    export JAVA_OPTS="-server –Xms1024m -Xmx1024m -XX:+UseParallelOldGC  -verbose:gc -Xloggc:../logs/gc.log  -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"

  • A系统JVM参数设置保持不变,以便观察系统运行情况,即:

    export JAVA_OPTS="-server -Xms1536m -Xmx1536m -XX:+UseParallelOldGC  -verbose:gc -Xloggc:../logs/gc.log  -XX:+PrintGCDetails -XX:+PrintGCTimeStamps

  • 将A、B节点系统的JVM参数采用2套参数,是为了验证A或B的参数更适合实际情况。

记一次有惊无险的 JVM 优化经历的更多相关文章

  1. 记一次Hbase查询速度优化经历

    项目背景: 在这次影像系统中,我们利用大数据平台做的是文件(图片.视频等)批次的增删改查,每个批次都包含多个文件,上传完成以后要添加文件索引(文件信息及批次信息),由于在Hbase存储的过程中,每个文 ...

  2. 记一次真实的webpack优化经历

    前言 公司目前现有的一款产品是使用vue v2.0框架实现的,配套的打包工具为webpack v3.0.整个项目大概有80多个vue文件,也算不上什么大型项目. 只不过每次头疼的就是打包所耗费的时间平 ...

  3. Java虚拟机内存基础、垃圾收集算法及JVM优化

    1 JVM 简单结构图   1.1 类加载子系统与方法区 类加载子系统负责从文件系统或者网络中加载 Class 信息,加载的类信息存放于一块称 为方法区的内存空间.除了类的信息外,方法区中可能还会存放 ...

  4. JVM优化

    1.堆大小设置 JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64 ...

  5. JVM 优化问题

    jvm 优化问题 JVM堆内存分为2块:Permanent Space 和 Heap Space. Permanent 即 持久代(Permanent Generation),主要存放的是Java类定 ...

  6. 给hive的metastore做JVM优化

    最近在测试环境下,hive的metastore不稳定,于是做一次JVM优化 在hive-env.sh中 export HADOOP_HOME=/opt/cdh/hadoop-2.6.0-cdh5.14 ...

  7. linux下jvm优化、tomcat调优

    系统环境:jdk1.8,apache-tomcat-8.5.35 一.jvm优化 进入 bin/catalina.sh,修改JAVA_OPTS配置: JAVA_OPTS="-server - ...

  8. SQL 优化经历

    一次非常有趣的 SQL 优化经历   阅读本文大概需要 6 分钟. 前言 在网上刷到一篇数据库优化的文章,自己也来研究一波. 场景 数据库版本:5.7.25 ,运行在虚拟机中. 课程表 #课程表 cr ...

  9. 性能优化系列三:JVM优化

    一.几个基本概念 GCRoots对象都有哪些 所有正在运行的线程的栈上的引用变量.所有的全局变量.所有ClassLoader... 1.System Class.2.JNI Local3.JNI Gl ...

随机推荐

  1. Android笔记(三十八) Android中的数据存储——SharedPreferences

    SharedPreferences是Android提供的一种轻型的数据存储方法,其本质是基于xml文件存储的,内部数据以key-value的方式存储,通常用来存储一些简单的配置信息. SharedPr ...

  2. 网络时间同步服务和chrony

    时间同步和chrony 时间同步:多主机协作工作时,各个主机时间同步很重要,时间不一致会造成很多重要应用的故障,如:加密协议,日志,集群等, 利用NTP(Network Time Protocol) ...

  3. 程序员常用的3大Web安全漏洞防御解决方案:XSS、CSRF及SQL注入(图文详解)

    https://blog.csdn.net/ChenRui_yz/article/details/86489067 随着互联网的普及,网络安全变得越来越重要,程序员需要掌握最基本的web安全防范,下面 ...

  4. 【转】采用Gson解析含有多种JsonObject的复杂json

    本文对应的项目是MultiTypeJsonParser ,项目地址 https://github.com/sososeen09/MultiTypeJsonParser 0 前奏 使用 Gson 去解析 ...

  5. JavaScript解析机制之变量提升

    1.什么是预解析? 在当前作用域下,JS 运行之前,会把带有 var 和 function 关键字的事先声明,并在内存中安排好.(这个过程也可以理解为变量提升)然后再从上到下执行 JS 语句(预解析只 ...

  6. Flink Streaming基于滚动窗口的事件时间分析

    使用flink-1.9.0进行的测试,在不同的并行度下,Flink对事件时间的处理逻辑不同.包括1.1在并行度为1的本地模式分析和1.2在多并行度的本地模式分析两部分.通过理论结合源码进行验证,得到具 ...

  7. Kotlin扩展作用域分析与扩展的根本作用解析

    在上一次https://www.cnblogs.com/webor2006/p/11219358.html学习了Kotlin的扩展,继续这个话题继续拓展,首先提出这么一个问题:假如我们扩展的方法跟类中 ...

  8. gdb调试(二)

    继续研究gdb相关的调试技巧,话不多说进入正题: 查看运行时数据: 这个上节中已经用过了,这里就不多说了,比较简单 还是有上节中的simple.c例子,不过得稍微做一些修改为了使用这些命令: simp ...

  9. JVM垃圾回收重要理论剖析【纯理论】

    JVM学习到这里,终于到学习最兴奋的地方了---垃圾回收,在学习它之前还得对JVM垃圾回收相关理论知识进行了解,然后再通过实践来加深对理论的理解,下面直接开始了解相关的理论: JVM运行时内存数据区域 ...

  10. sql:拼接字符串、截取字符串、取字符串长度

    --第一段 SELECT substr('1233***6795', 0, (select instr('1233***6795', '***', 1, 1) from dual) - 1) from ...