1. Spark基础解析
1.1 Spark概述
1.1.1 什么是Spark
官网:http://spark.apache.org
Spark是一种快速、通用、可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。项目使用Scala进行编写。
目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLib、SparkR等子项目,Spark是基于内存计算的大数据并行计算框架。除了扩展了广泛使用的MapReduce计算模型,而且高效的支持更多计算模式,包括交互式查询和流处理。Spark适用于各种各样原先需要多种不同的分布式平台场景,包括批处理、迭代算法、交互式查询、流处理。通过在一个统一的框架下支持这些不同的计算,Spark使我们可以简单而低耗地把各种处理流程整合在一起。而这样的组合,在实际的数据分析过程中是很有意义的。不仅如此,Spark的这种特性还大大减轻了原先需要对各种平台分别管理的负担。
大一统的软件栈,各个组件关系密切并且可以相互调用,这种设计有几个好处:
1、软件栈中所有的程序库和高级组件都可以从下层的改进中获益
2、运行整个软件栈的代价变小了,不需要运行5到10套独立的软件系统了,一个机构只需要运行一套软件系统即可。系统的部署、维护、测试、支持等大大缩减。
3、能够构建出无缝整合不同处理模型的应用
Spark的内置项目如下:
Spark Core:实现了Spark的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。Spark Core中还包含了对弹性分布式数据集(resilient distributed dataset,简称RDD)的API的定义
Spark SQL:是Spark用来操作结构化数据的程序包。通过Spark SQL,我们可以使用SQL或者Apache Hive版本的SQL方言(HQL)来查询数据。Spark SQL支持多种数据源,比如Hive表、Parquet以及JSON等
Spark Streaming:是Spark提供的对实时数据进行流式计算的组件。提供了用来操作数据流的API,并且与Spark Core中的RDD API高度对应
Spark MLlib:提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据导入等额外的支持功能
集群管理器:Spark设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计算。为了实现这样的要求,同时获得最大灵活性,Spark支持在各种集群管理器(cluster manager)上运行,包括Hadoop YARN、Apache Mesos,以及Spark自带的一个简易调度器,叫做独立调度器
Spark得到了众多大数据公司的支持,这些公司包括Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于凤巢、大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的Spark集群
1.2 Spark特点
1.2.1 快
与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理流数据。计算的中间结果是存在于内存中的。
1.2.2 易用
Spark支持Java、Python、Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法
1.2.3 通用
Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本
1.2.4 兼容性
Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具
1.3 Spark的用户和用途
大致把Spark的用例分为两类:数据科学应用和数据处理应用。也就对应的有两种人群:数据科学家和工程师
1.3.1 数据科学任务
主要是数据分析领域,数据科学家要负责分析数据并建模,具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的使用Python、Matlab或R语言进行编程的能力
1.3.2 数据处理应用
工程师定义为使用Spark开发生产环境中的数据处理应用的软件开发者,通过对接Spark的API实现对数据的处理和转换等任务
1.4 Spark核心概念
每个Spark应用都由一个驱动程序(driver program)来发起集群上的各种并行操作。驱动器程序包含应用的main函数,并且定义了集群上的分布式数据集,还对这些分布式数据集应用了相关操作
驱动器程序通过一个SparkContext对象来访问Spark。这个对象代表对计算集群的一个连接。shell启动时已经自动创建了一个SparkContext对象,是一个叫做sc的变量
驱动器程序一般要管理多个执行器(executor)节点
1. Spark基础解析的更多相关文章
- 【大数据】Spark基础解析
第1章 Spark概述 1.1 什么是Spark 1.2 Spark内置模块 Spark Core:实现了Spark的基本功能,包含任务调度.内存管理.错误恢复.与存储系统交互等模块.Spark Co ...
- 【大数据】Spark内核解析
1. Spark 内核概述 Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制.Spark任务调度机制.Spark内存管理机制.Spark核心功能的运行原理等,熟练掌握Spa ...
- 最全的spark基础知识解答
原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduc ...
- 【Spark 内核】 Spark 内核解析-下
Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制.Spark任务调度机制.Spark内存管理机制.Spark核心功能的运行原理等,熟练掌握Spark内核原理,能够帮助我们更 ...
- Spark内核解析
Spark内核概述 Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制.Spark任务调度机制.Spark内存管理机制.Spark核心功能的运行原理等,熟练掌握Spark内核 ...
- java基础解析系列(四)---LinkedHashMap的原理及LRU算法的实现
java基础解析系列(四)---LinkedHashMap的原理及LRU算法的实现 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析 ...
- java基础解析系列(五)---HashMap并发下的问题以及HashTable和CurrentHashMap的区别
java基础解析系列(五)---HashMap并发下的问题以及HashTable和CurrentHashMap的区别 目录 java基础解析系列(一)---String.StringBuffer.St ...
- java基础解析系列(六)---深入注解原理及使用
java基础解析系列(六)---注解原理及使用 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析系列(二)---Integer ja ...
- java基础解析系列(七)---ThreadLocal原理分析
java基础解析系列(七)---ThreadLocal原理分析 目录 java基础解析系列(一)---String.StringBuffer.StringBuilder java基础解析系列(二)-- ...
随机推荐
- Win10 设备管理器一个USB设备描述符请求失败解决方法
问题:进入设备管理器,发现[通用串行总线控制器]下有一项带有黄色[!]未知USB设备(设备描述符请求失败). 或者 解决方法如下: 1.点击Windows键 +R或者(点击系统桌面左下角[开始],在开 ...
- JVM 自定义类加载器
一.创建自定义类加载器 package com.example.jvm.classloader; import java.io.ByteArrayOutputStream; import java.i ...
- 2019年ArcGIS规划专业专项培训(四天)
2019年ArcGIS规划专业专项培训(四天) 商务合作,科技咨询,版权转让:向日葵,135-4855__4328,xiexiaokui#qq.com 第一天:GIS入门 第一章 GIS概述及其应 ...
- 001 centos7中的安装
以前学习过centos6.4的安装使用,然后新使用centos7,发现有些修改配置变化了,记录一下. 1.修改主机名 查看主机名: 修改: 二:ip的固定 1.参考文章 https://www.jia ...
- 【转载】 DeepMind发表Nature子刊新论文:连接多巴胺与元强化学习的新方法
原文地址: baijiahao.baidu.com/s?id=1600509777750939986&wfr=spider&for=pc 机器之心 18-05-15 14:26 - ...
- Dart中的数据类型转换:
int -> string age.toString() string -> int int.parse('100'); String -> double 1 var onePoin ...
- aar api 导出
import fsys; import math; var pidMap = {}; math.randomize(); fsys.enum( "~\lib", "*.* ...
- springboot 项目基本目录包结构
1.基本目录结构 controller service impl mapper utils domain config interceoter(拦截器) dto
- layer confirm 三种选择按钮
layer.confirm('请选择是否通过提现?(tips:同意直接打款,驳回不可恢复)', { btn : ['通过-打款','不通过','通过-已打款'], btn1:function(){ a ...
- springboot整合mybatis的时候报错Caused by: java.lang.IllegalArgumentException: Property 'sqlSessionFactory' or 'sqlSessionTemplate' are required
今天闲来无事,学习springboot整合mybatis,在bilibili看视频学的,视频中在dao层的interface上面加上org.apache.ibatis.annotations.Mapp ...