LOJ P10249 weight 题解
每日一题 day58 打卡
Analysis
这道题搜索的想法非常巧妙,从两端向中间找,这样可以保证仅仅对于head或tail而言,需要用到的前缀和与后缀和是单调递增的,这样排个序就解决了。
值得一提的是,在搜索时开两个变量记录前缀与后缀和,以便计算。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define maxn 2000+10
#define rep(i,s,e) for(register int i=s;i<=e;++i)
#define dwn(i,s,e) for(register int i=s;i>=e;--i)
using namespace std;
inline int read()
{
int x=,f=;
char c=getchar();
while(c<''||c>'') {if(c=='-') f=-; c=getchar();}
while(c>=''&&c<='') {x=x*+c-''; c=getchar();}
return f*x;
}
inline void write(int x)
{
if(x<) {putchar('-'); x=-x;}
if(x>) write(x/);
putchar(x%+'');
}
int n,m;
int a[maxn],ans[maxn];
int book[maxn*];
int flag=;
void dfs(int num,int head,int tail,int sum_head,int sum_tail)
{
if(flag==) return;
if(head==tail)
{
int x=a[*n]-sum_head-sum_tail;
if(x>=&&x<=&&book[x]==)
{
ans[head]=x;
rep(i,,n) {write(ans[i]); putchar(' ');}
flag=;
}
}
else
{
int x=a[num]-sum_head;
if(x>=&&x<=&&book[x]==)
{
ans[head]=x;
dfs(num+,head+,tail,sum_head+x,sum_tail);
ans[head]=;
}
x=a[num]-sum_tail;
if(x>=&&x<=&&book[x]==)
{
ans[tail]=x;
dfs(num+,head,tail-,sum_head,sum_tail+x);
ans[tail]=;
}
}
}
signed main()
{
n=read();
rep(i,,*n) a[i]=read();
sort(a+,a+*n+);
m=read();
rep(i,,m)
{
int x=read();
book[x]=;
}
dfs(,,n,,);
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
LOJ P10249 weight 题解的更多相关文章
- LOJ 一本通一句话题解系列:
第一部分 基础算法 第 1 章 贪心算法 1):「一本通 1.1 例 1」活动安排:按照结束时间排序,然后扫一遍就可以了. 2):「一本通 1.1 例 2」种树:首先要尽量的往区间重叠的部分种树,先按 ...
- LOJ P10013 曲线 题解
每日一题 day38 打卡 Analysis 这道题运用的是三分,就是说具有一定的单调性,找最大最小值,然后和二分基本类似,就是说特性就是说当前两个点比较,较优的点和最优点在相对了较差点的同侧,就是说 ...
- LOJ P10002 喷水装置 题解
每日一题 day35 打卡 Analysis 先将不符合条件的区间去掉(即半径小于W,不然宽度无法符合),将符合条件的按区间存入节点中.区间的左边界是x-sqrt(r*r-W*W/4.0),要计算x轴 ...
- LOJ P10016 灯泡 题解
每日一题 day50 打卡 Analysis 用初中学的相似推一波式子,再用三分一搞就好了. #include<iostream> #include<cstdio> #incl ...
- LOJ P10015 扩散 题解
每日一题 day49 打卡 Analysis 用dis数组记录每两个点之间的时间,再用一个传递闭包来维护最小的时间就好了 #include<iostream> #include<cs ...
- CF827D Best Edge Weight 题解
题意: 给定一个点数为 n,边数为 m,权值不超过 \(10^9\) 的带权连通图,没有自环与重边. 现在要求对于每一条边求出,这条边的边权最大为多少时,它还能出现在所有可能的最小生成树上,如果对于任 ...
- LOJ 10214 计算器 题解
题面 k==1时,快速幂就好了: k==2时,exgcd就好了,但要注意取模范围的控制: k==3时,BSGS可以解决高次同余方程: 然后就可以开心的A掉了,但要注意特殊情况的特判 #include ...
- 【网络流24题】最长k可重线段集(费用流)
[网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
随机推荐
- Java学习:面向对象三大特征:封装、继承、多态之封装性
面向对象三大特征:封装.继承.多态. 封装性在Java当中的体现: 方法就是一种封装 关键字private也是一种封装 封装就是将一些细节信息隐藏起来,对于外界不可见. 问题描述:定义Person的年 ...
- jQuery中cookie的简单操作
jQuery 可以通过 jquery.cookie.js 插件来操作 Cookie. 用NuGet安装:PM>Install-Package js-cookie -Version 官网:http ...
- Spring AOP 复习
Aspect Oriented Programming 通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术,利用aop可以对业务逻辑的各个部分进行隔离,从而使得业务逻辑各部分之间的耦合度降 ...
- Springboot揭秘-快速构建微服务体系-王福强-2016年5月第一次印刷
JavaConfig项目: spring IOC有一个非常核心的概念——Bean.由Spring容器来负责对Bean的实例化,装配和管理.XML是用来描述Bean最为流行的配置方式.Spring可以从 ...
- vue动态子组件的实现方式
让多个组件使用同一个挂载点,并动态切换,这就是动态组件. 通过使用保留的 <component>元素,动态地绑定到它的 is 特性,可以实现动态组件. 方式一:局部注册所需组件 <d ...
- Numpy和Pandas的使用入门
Numpy Numpy基本数据结构 np.array()函数接受一个多维list,返回对应纬度的矩阵 vector = np.array([1, 2, 3, 4]) matrix = np.array ...
- Android 创建工程
安卓系统占有率 创建 Application name:程序的名称,一般会出现在应用程序的标题栏 Project name:一个项目的名称,实际对应一个文件夹 Pakcage name:此名理论上可以 ...
- 升级.net core 3.x 后mvc项目调试状态编辑view代码不能实时预览
https://stackoverflow.com/a/58126955 简单来说 需要在nuget上安装Microsoft.AspNetCore.Mvc.Razor.RuntimeCompilati ...
- ML-线性模型 泛化优化 之 L1 L2 正则化
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...
- nginx配置ssl证书流程及常见问题
背景: 项目开发中用到了微信小程序,但是服务器配置URL必须是HTTPS,所以需要通过配置nginx的SSL模块来支持HTTPS访问,也就是说,要做一个网站域名为 dmsdbj.com ...