1040 最大公约数之和

给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6

1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15

输入

1个数N(N <= 10^9)

输出

公约数之和

输入样例

6

输出样例

15

题解

\[\sum_{i=1}^n\gcd(i,n)=\sum_{d|n}d\varphi(n)
\]

暴力搞就行了。

1188 最大公约数之和 V2

给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和。

相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数):

G=0
for i=1 to N
for j=i+1 to N
G+=gcd(i,j)

输入

第1行:1个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)

第2 - T + 1行:每行一个数N。(2 <= N <= 5000000)

输出

共T行,输出最大公约数之和。

输入样例

3

10

100

200000

输出样例

67

13015

143295493160

1237 最大公约数之和 V3

给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和。

相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数):

由于结果很大,输出Mod 1000000007的结果。

G=0
for i=1 to N
for j=1 to N
G = (G + gcd(i,j)) mod 1000000007;

输入

输入一个数N。(2 <= N <= 10^10)

输出

输出G Mod 1000000007的结果。

输入样例

100

输出样例

31080

可以看出来,T2,T3转化一下就只有数据范围不同。

题解

\[\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}[\gcd(i,j)=1]\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}\sum_{d'|\gcd(i,j)}\mu(d)\\
=\sum_{d=1}^nd\sum_{d'=1}^{\lfloor\frac nd\rfloor}\mu(d')\lfloor\frac n{dd'}\rfloor^2
\]

整除分块两次,区别在于第二次。

  • V2可以直接线性筛求出\(\mu\)前缀和。
  • V3必须使用杜教筛,让\(\mu * I\)即可。

1363 最小公倍数之和

1.5 秒 131,072.0 KB 160 分 6 级题

给出一个n,求1-n这n个数,同n的最小公倍数的和。

例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。

由于结果很大,输出Mod 1000000007的结果。

输入

第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)

第2 - T + 1行:T个数A[i](A[i] <= 10^9)

输出

共T行,输出对应的最小公倍数之和

输入样例

3

5

6

9

输出样例

55

66

279


这题跟[SPOJ LCMsum](https://www.cnblogs.com/autoint/p/9892650.html)是一样的,只不过数据范围不一样,所以推到后面的操作不一样。
## [Star_Feel](https://www.cnblogs.com/Never-mind/p/9882196.html)的题解
原题相当于求$\sum_{i=1}^{n}\frac{i*n}{gcd(i,n)}$

先枚举\(d=\gcd(i,n)\),然后化简得到

\[n*\sum_{d|n}\sum_{i=1}^{\frac{n}{d}}i[\gcd(i,\frac{n}{d})=1]
\]

相当于求\(1\)到\(n-1\)中,与\(n\)互质的数和,设\(y<x\),如果\(\gcd(y,x)=1\),那么\(\gcd(x-y,x)=1\),两式的贡献就是\(x\)了

所以\(1\)到\(n-1\)中,与\(n\)互质的数和为\(\frac{\phi(n)*n}{2}\),特殊的,如果\(n=1,2\),则和为\(1\)

那么原式就等于

\[n*\sum_{d|n且d不为n}\frac{\frac{n}{d}*\phi(\frac{n}{d})}{2}+1
\]

再化简得到

\[n+\frac{n}{2}\sum_{d|n且d>1}d*phi(d)
\]

这样,这个式子就变成\(O(\sqrt{n})\),但是多组数据仍会超时

实际上我们将\(n\)质因数分解得到\(n=\prod_{i=1}^{x}p[i]^a[i]\)

因为\(p[i]\)两两互质,所以可以转化为

\[n+\prod_{i=1}^{x}\sum_{j=0}^{a[i]}\phi(p[i]^j)*p[i]^j
\]

根据欧拉函数的性质可以得到

\[n+\prod_{i=1}^{x}1+\sum_{j=1}^{a[i]}(p[i]-1)*p[i]^{2j-1}
\]

再根据等比数列求和公式得到

\[n+\prod_{i=1}^{x}1+(p[i]-1)*\frac{p[i]^{2*a[i]+1}-p[i]}{p[i]^2-1}\\
=n+\prod_{i=1}^{x}1+\frac{p[i]^{2*a[i]+1}-p[i]}{p[i]+1}
\]

然后线筛素数加速质因数分解就可以过了,记得最后处理\(1,2\)的情况

1190 最小公倍数之和 V2

给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b)。

例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。

由于结果可能很大,输出Mod 10^9 + 7的结果。(测试数据为随机数据,没有构造特别坑人的Test)

输入

第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)

第2 - T + 1行:每行2个数a, b,中间用空格分隔(1 <= a <= b <= 10^9)

输出

共T行,输出对应的最小公倍数之和Mod 10^9 + 7的结果。

输入样例

3

1 6

10 15

41 90

输出样例

66

675

139860

Cold_Chair的题解

\[ans = \sum_{i = a}^b \textrm{lcm}(i) \\
= b*\sum_{d | b} \sum_{i = \lfloor{ {a} \over {d}}\rfloor}^{\lceil{ {b} \over {d}}\rceil} i * [\gcd(i, { {b} \over {d}}) = 1] \\
= b*\sum_{d | b} \sum_{i = \lfloor{ {a} \over {d}}\rfloor}^{\lceil{ {b} \over {d}}\rceil} i * \sum_{d' | \gcd(i, { {b} \over {d}})} μ(d') \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * \sum_{i = \lfloor{ {b} \over {d }}\rfloor}^{\lceil{ {a} \over {d}}\rceil}i*[d' | i] \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * \sum_{i = \lfloor{ {b} \over {d*d' }}\rfloor}^{\lceil{ {a} \over {d * d'}}\rceil}i \\
= b*\sum_{d | b} \sum_{d' | { {b} \over {d}}} μ(d') * d' * (\lfloor{ {b} \over {d*d' }}\rfloor - \lceil{ {a} \over {d * d'}}\rceil + 1) * (\lfloor{ {b} \over {d*d' }}\rfloor + \lceil{ {a} \over {d * d'}}\rceil) / 2
\]

设$T = d * d’ $

\[= b*\sum_{T | b}(\lfloor{ {b} \over {T}}\rfloor - \lceil{ {a} \over {T}}\rceil + 1) * (\lfloor{ {b} \over {T}}\rfloor + \lceil{ {a} \over {T}}\rceil) / 2 * \sum_{d | T} μ(d) * d
\]

我们观察一下$\sum_{d | T} μ(d) * d \(
狄利克雷卷积做了这么多,轻松可得:
若\)T = \prod{p_i^{q_i}}$,那么

\[\sum_{d | T} μ(d) * d = \prod{1-p_i}
\]

1238 最小公倍数之和 V3

出一个数N,输出小于等于N的所有数,两两之间的最小公倍数之和。

相当于计算这段程序(程序中的lcm(i,j)表示i与j的最小公倍数):

由于结果很大,输出Mod 1000000007的结果。

G=0
for i=1 to N
for j=1 to N
G = (G + lcm(i,j)) mod 1000000007;

输入

输入一个数N。(2 <= N <= 10^10)

输出

输出G Mod 1000000007的结果。

输入样例

4

输出样例

72

题解

\[\sum_{i=1}^n\sum_{j=1}^n\textrm{lcm}(i,j)=\sum_{i=1}^n\sum_{j=1}^n\frac{ij}{\gcd(i,j)}\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij[\gcd(i,j)=1]\\
=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}ij\sum_{d'|\gcd(i,j)}\mu(d)\\
=\sum_{d=1}^nd\sum_{d'=1}^{\lfloor\frac nd\rfloor}\mu(d')(d')^2\left(\sum_{i=1}^{\lfloor\frac n{dd'}\rfloor}i\right)^2
\]

然后就变成了LG3768 简单的数学题,外面多套了一个整除分块,不过不影响复杂度。(毒瘤)

51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3的更多相关文章

  1. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  2. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  3. 51nod 1190 最小公倍数之和 V2

    给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...

  4. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  5. 51nod1363 最小公倍数之和

    题目描述 给出一个n,求1-n这n个数,同n的最小公倍数的和. 例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mo ...

  6. 2019t1_sumdoc_list.txt aa.docx acc baidu v2 sbb.docx Acc jindon v2 sbb.docx assetsList.html Atiitt 日本刑法典读后笔记.docx Atiti 遇到说花心的时候赞美应对.docx Atitit lesson.docx Atitit malye主义、mzd思想和dsp理论的区别和联系.docx Ati

    2019t1_sumdoc_list.txtaa.docxacc baidu v2 sbb.docxAcc jindon v2 sbb.docxassetsList.htmlAtiitt 日本刑法典读 ...

  7. Kinect v1 (Microsoft Kinect for Windows v1 )彩色和深度图像对的采集步骤

    Kinect v1 (Microsoft Kinect for Windows v1 )彩色和深度图像对的采集步骤 一.在ubuntu下尝试 1. 在虚拟机VWware Workstation 12. ...

  8. Kinect v2(Microsoft Kinect for Windows v2 )配置移动电源解决方案

    Kinect v2配置移动电源解决方案 Kinect v2如果用于移动机器人上(也可以是其他应用场景),为方便有效地展开后续工作,为其配置移动电源是十分必要的. 一.选择移动电源 Kinect v2原 ...

  9. 51Nod 最小公倍数之和V3

    这题公式真tm难推……为了这题费了我一个草稿本…… woc……在51Nod上码LaTeX码了两个多小时…… 一开始码完了前半段,刚码完后半段突然被51Nod吃了,重新码完后半段之后前半段又被吃了,吓得 ...

随机推荐

  1. 通过LxRunOffline迁移Win10的Linux子系统

    默认情况WSL装在系统盘(C:),重装系统怎么办?C盘空间不足怎么办?能修改WSL安装路径吗? 当然可以,使用LxRunOffline不仅能修改WSL安装路径,还能备份WSL.还原WSL…… 修改WS ...

  2. LeetCode 445. 两数相加 II(Add Two Numbers II)

    445. 两数相加 II 445. Add Two Numbers II 题目描述 给定两个非空链表来代表两个非负整数.数字最高位位于链表开始位置.它们的每个节点只存储单个数字.将这两数相加会返回一个 ...

  3. LeetCode 82. 删除排序链表中的重复元素 II(Remove Duplicates from Sorted List II)

    82. 删除排序链表中的重复元素 II 82. Remove Duplicates from Sorted List II 题目描述 给定一个排序链表,删除所有含有重复数字的节点,只保留原始链表中没有 ...

  4. 【转帖】MIPS构架:曾经是英特尔的“眼中钉”

    MIPS构架:曾经是英特尔的“眼中钉” https://www.eefocus.com/mcu-dsp/363953 <处理器史话>之十一 2016-06-17 08:02 作者:付丽华预 ...

  5. adb常用命令总结

    针对移动端 Android 的测试, adb 命令是很重要的一个点,必须将常用的 adb 命令熟记于心, 将会为 Android 测试带来很大的方便,其中很多命令将会用于自动化测试的脚本当中. And ...

  6. win10 远程连接怎么设置快捷方式

    在桌面空白处右键,选择新建快捷方式,然后输入命令:C:\windows\system32\mstsc.exe,点击下一步,然后输入快捷方式名称:远程连接,点击确定即可.

  7. JSOI2019 Round2

    JSOI的题质量很高-- 精准预测(2-SAT.拓扑排序.bitset) 不难发现两个条件都可以用经典的2-SAT连边方式连边,考虑如何加入时间的限制.对于第\(x\)个人在\(t\)时刻的状态是生/ ...

  8. Linux 系统中如何进入退出 vim 编辑器

    在 Linux 中,vim 编辑器是系统自带的文本编辑器,但要修改某个文本文件,可不是像 Windows 那样操作,更有新手,进入 vi 编辑器后,无法退出以致于强制关机,其实,这个vim(vi)也是 ...

  9. wbSocket

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  10. session 在PC端正常设置读取,在移动端无法正常读取

    一.背景 最近在做一个面向三端[H5.IOS.安卓]的短信验证码登录接口.发送短信验证码时,服务端通过 session 保存验证码的值.登录时,从 session 获取验证码和用户输入的验证码 相比较 ...