背景

  YOLO v1检测效果不好,且无法应用于检测密集物体。

方法

  YOLO v2是在YOLO v1的基础上,做出如下改进。

  (1)引入很火的Batch Normalization,提高mAP和训练速度;

  (2)加入了Anchor Box机制,每个grid cell5个Anchor Box;

  (3)自动选择Anchor Box,这是作者所作出的创新,之前Anchor Box都是人为直接规定的,显然不是很合理。作者通过K-means聚类算法,用IoU作为距离度量,生成了Anchor Box的尺度。

  (4)引入Multi-Scale的思想,YOLO v2去掉了全连接层,所以网络可以接受不同size的图片,训练过程中网络每隔10 batch随机选择不同的size的图片作为输入数据。

总结

  YOLO v2在YOLO v1基础上,加入各种流行的技术,达到了非常好的效果。

目标检测论文解读7——YOLO v2的更多相关文章

  1. 目标检测论文解读5——YOLO v1

    背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...

  2. 目标检测论文解读8——YOLO v3

    背景 要在YOLO v2上作出改进. 方法 (1)分类器改变.从softmax loss改变为logistic loss,作用是处理符合标签,softmax loss只能用来预测只有一种类别的目标,l ...

  3. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  4. 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation

    背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...

  5. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

  6. 目标检测论文解读13——FPN

    引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...

  7. 目标检测论文解读6——SSD

    背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...

  8. 目标检测论文解读12——RetinaNet

    引言 这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度. 思路 在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样 ...

  9. 目标检测论文解读9——R-FCN

    背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...

随机推荐

  1. MySQL日记

    MySQL日记 MySQL——day01:https://www.cnblogs.com/noonjuan/diary/2019/07/24/11241543.html MySQL——day02:ht ...

  2. 【微信小程序】小程序中的函数节流

    大ga吼! 很久没写博客咯,今天学到了一点新知识, 记录分享一下~ 摘要: 小程序中的函数节流 场景: 从商城列表进入商品详情中时,或者生成,提交订单, 付款的时候, 若用户快速点击(一秒8键,母胎s ...

  3. 【2019年07月08日】A股最便宜的股票

    查看更多A股最便宜的股票:androidinvest.com/CNValueTop/ 便宜指数 = PE + PB + 股息 + ROE,四因子等权,数值越大代表越低估. 本策略只是根据最新的数据来选 ...

  4. 一张图入门Python【中文版】

    好久没写了,就拿这张图作为开篇吧,重新梳理自己学习的东西,最近两年人工智能炒红了python,devops的提出也把开发.运维整合到了一起,作为一个运维工程师,随着企业自动化运维的提出,光会shell ...

  5. Unity Shader 序列帧动画

    shader中的序列帧动画属于纹理动画中的一种,主要原理是将给定的纹理进行等分,再根据时间的变化循环播放等分中的一部分. Unity Shader 内置时间变量 名称 类型 描述 _Time floa ...

  6. UVA 10924 Prime Words 题解

    Prime Words A prime number is a number that has only two divisors: itself and the number one. Exampl ...

  7. 集合类源码(五)Collection之BlockingQueue(LinkedTransferQueue, PriorityBlockingQueue, SynchronousQueue)

    LinkedTransferQueue 功能 全名 public class LinkedTransferQueue<E> extends AbstractQueue<E> i ...

  8. 百度前端技术学院-task1.4源代码

    任务描述 实现如 示例图(点击打开) 的效果 灰色元素水平垂直居中,有两个四分之一圆位于其左上角和右下角. 任务注意事项 思考不同情况下(如灰色高度是根据内容动态变化的)水平垂直居中的解决方案. 动手 ...

  9. go ---MQTT client

    Paho GO Client   语言 GO 协议 EPL AND EDL 官网地址 http://www.eclipse.org/paho/ API类型 Asynchronous  描述 Paho ...

  10. 【linux】CentOS 查看系统时间,修改时区

    ===============CentOS 7.6================ 1.查看系统时间 date 查看当前系统时间以及时区结果是: Mon Jul 8 09:23:31 UTC 2019 ...