Pandas学习笔记系列:

原文: https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-1-pd-intro/

Numpy 和 Pandas 有什么不同

如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式。Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。

要使用pandas,首先需要了解他主要两个数据结构:SeriesDataFrame

Series

import pandas as pd
import numpy as np
s = pd.Series([1,3,6,np.nan,44,1]) print(s) >>>
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64

Series的字符串表现形式为:索引在左边,值在右边。由于我们没有为数据指定索引。于是会自动创建一个0到N-1(N为长度)的整数型索引。

DataFrame

DataFrame是一个表格型的数据结构,它包含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值等)。DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。

用下面的例子简单理解就是DataFramecolumns,index,values组成:

  • columns: ['a','b','c','d']
  • index:dates (日期)
  • values:np.random.randn(6,4)
dates = pd.date_range('20160101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']) print(df) >>>
a b c d
2016-01-01 -0.253065 -2.071051 -0.640515 0.613663
2016-01-02 -1.147178 1.532470 0.989255 -0.499761
2016-01-03 1.221656 -2.390171 1.862914 0.778070
2016-01-04 1.473877 -0.046419 0.610046 0.204672
2016-01-05 -1.584752 -0.700592 1.487264 -1.778293
2016-01-06 0.633675 -1.414157 -0.277066 -0.442545

我们可以根据每一个不同的索引来挑选数据, 比如挑选 b 的元素:

print(df['b'])

>>>
2016-01-01 -2.071051
2016-01-02 1.532470
2016-01-03 -2.390171
2016-01-04 -0.046419
2016-01-05 -0.700592
2016-01-06 -1.414157
Freq: D, Name: b, dtype: float64

DataFrame 的一些简单运用

不指定columns和index

我们在创建一组没有给定行标签和列标签的数据 df1:

df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print(df1) >>>
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11

这样,他就会采取默认的从0开始 index.

指定columns

还有一种生成 df 的方法, 如下 df2:

df2 = pd.DataFrame({'A' : 1.,
'B' : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo'}) print(df2) >>>
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo

这种方法能对每一列的数据进行特殊对待.

dtypes

如果想要查看数据中的类型, 我们可以用 dtypes 这个属性:

print(df2.dtypes)

>>>
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object

index

如果想看对列的序号:

print(df2.index)

>>>
Int64Index([0, 1, 2, 3], dtype='int64')

columns

同样, 每种数据的名称也能看到:

print(df2.columns)

# Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')

values

如果只想看所有df2的值:

print(df2.values)

>>>
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)

describe

想知道数据的总结, 可以用 describe():

df2.describe()

>>>
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0

transpose

如果想翻转数据, transpose:

print(df2.T)

>>>
0 1 2 \
A 1 1 1
B 2013-01-02 00:00:00 2013-01-02 00:00:00 2013-01-02 00:00:00
C 1 1 1
D 3 3 3
E test train test
F foo foo foo 3
A 1
B 2013-01-02 00:00:00
C 1
D 3
E train
F foo

sort

  • 如果想对数据的 index 进行排序并输出:
print(df2.sort_index(axis=1, ascending=False))

>>>
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
  • 如果是对数据值 value 排序输出:
print(df2.sort_values(by='B'))

>>>
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo

微信公众号:AutoML机器学习

MARSGGBO♥原创

如有意合作或学术讨论欢迎私戳联系~
邮箱:marsggbo@foxmail.com




2019-10-30 10:51:00

【转】Pandas学习笔记(一)基本介绍的更多相关文章

  1. 【转】Pandas学习笔记(七)plot画图

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  2. 【转】Pandas学习笔记(六)合并 merge

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  3. 【转】Pandas学习笔记(五)合并 concat

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  4. 【转】Pandas学习笔记(四)处理丢失值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  5. 【转】Pandas学习笔记(三)修改&添加值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  6. 【转】Pandas学习笔记(二)选择数据

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  7. HTML+CSS学习笔记(1) - Html介绍

    HTML+CSS学习笔记(1) - Html介绍 1.代码初体验,制作我的第一个网页 <!DOCTYPE HTML> <html> <head> <meta ...

  8. Pandas 学习笔记

    Pandas 学习笔记 pandas 由两部份组成,分别是 Series 和 DataFrame. Series 可以理解为"一维数组.列表.字典" DataFrame 可以理解为 ...

  9. Typescript 学习笔记一:介绍、安装、编译

    前言 整理了一下 Typescript 的学习笔记,方便后期遗忘某个知识点的时候,快速回忆. 为了避免凌乱,用 gitbook 结合 marketdown 整理的. github地址是:ts-gitb ...

随机推荐

  1. 在程序中修改IP win7 winXP(参考1)

    https://blog.csdn.net/bbdxf/article/details/7548443 Windows下程序修改IP的三种方法 以下讨论的平台依据是Window XP + SP1, 不 ...

  2. [探究] [Luogu4550]收集邮票的概率意义

    自认为这道题是一道比较简单的扩展题--?此处采用了和别的题解思路不同的,纯概率意义上的解法. 首先考虑一个简化版问题: 每次随机一个\([1,n]\)的整数,问期望几次能凑出所有数 这东西我写过一个b ...

  3. MySQL实战45讲学习笔记:第三十讲

    一.复习一下加锁规则 在第20和21篇文章中,我和你介绍了 InnoDB 的间隙锁.next-key lock,以及加锁规则.在这两篇文章的评论区,出现了很多高质量的留言.我觉得通过分析这些问题,可以 ...

  4. Spring security 知识笔记【自定义登录页面】

    一.引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  5. oracle--报错 ORA-01003,ORA-09817,ORA-01075

    磁盘满了,删除旧文件,即可保证登入成功

  6. HOT SUMMER 每天都是不一样,积极的去感受生活 C#关闭IE相应的窗口 .

    window.close(); System.Diagnostics.Process[]   myProcesses;     myProcesses   =   System.Diagnostics ...

  7. Qt 简易图片播放器

    一.前言 使用 Qt 制作了一个简单的图片播放器,点击 "浏览按钮" 浏览图片所在目录,目录中的所有图片缩小图标和名称会显示在左侧的图片列表中,点击列表中的图片项,可以在右侧区域的 ...

  8. python3 四舍五入(0.5可以进1)

    今天做了一个题要求四舍五入,然后找了一个方法:round()可以四舍五入, 试了试1.5--->2 试了试0.5--->0   !!!! 找了几个方法说可以的: # 方法一: from _ ...

  9. MongoDB学习笔记(五)

    MongoDB 查看执行计划 MongoDB 中的 explain() 函数可以帮助我们查看查询相关的信息,这有助于我们快速查找到搜索瓶颈进而解决它,本文我们就来看看 explain() 的一些用法及 ...

  10. JavaIO学习:字节流

    JavaIO流之字节流 字节流 抽象基类:InputStream,OutputStream. 字节流可以操作任何数据. 注意: 字符流使用的数组是字符数组,char[] chs : 字节流使用的数组是 ...