We often come across 'ablation study' in machine learning papers, for example, in this paper with the original R-CNN, it has a section of ablation studies. But what does this means?

Well, we know that when we build a model, we usually have different components of the model. If we remove some component of the model, what's the effect on the model? This is a very coarse definition of ablation study - we want to see the contributions of some proposed components in the model by comparing the model including this component with that without this component.

In the above paper, in order to see the effect of fine-tuning of the CNN, the authors analyzed the performance of the model with the fine-tuning and the performance of it without the fine-tuning. This way, we can easily see the effect of the fine-tuning.

The following I copied from the answer of Jonathan Uesato on Quora, it explains very well:

An ablation study typically refers to removing some “feature” of the model or algorithm and seeing how that affects performance.
Examples:
    • An LSTM has 4 gates: feature, input, output, forget. We might ask: are all 4 necessary? What if I remove one? Indeed, lots of experimentation has gone into LSTM variants, the GRU being a notable example (which is simpler).
    • If certain tricks are used to get an algorithm to work, it’s useful to know whether the algorithm is robust to removing these tricks. For example, DeepMind’s original DQN paper reports using (1) only periodically updating the reference network and (2) using a replay buffer rather than updating online. It’s very useful for the research community to know that both these tricks are necessary, in order to build on top of these results.
    • If an algorithm is a modification of a previous work, and has multiple differences, researchers want to know what the key difference is.
    • Simpler is better (inductive prior towards simpler model classes). If you can get the same performance with two models, prefer the simpler one.

Ablation Study的更多相关文章

  1. 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)

    Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...

  2. 《DSOD:Learning Deeply Supervised Object Detectors from Scratch》翻译

    原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架, ...

  3. 论文笔记(2):Deep Crisp Boundaries: From Boundaries to Higher-level Tasks

    ---------------------------------------------------------------------------------------------------- ...

  4. SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)

    Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...

  5. [Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p. ...

  6. [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks

    概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...

  7. (转)The Evolved Transformer - Enhancing Transformer with Neural Architecture Search

    The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33 ...

  8. Dual Attention Network for Scene Segmentation

    Dual Attention Network for Scene Segmentation 原始文档 https://www.yuque.com/lart/papers/onk4sn 在本文中,我们通 ...

  9. 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练

    BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...

随机推荐

  1. OpenSSL 下载和私钥证书、CERTIFICATE证书生成

    openssl 是生成私钥和公钥证书的重要工具. Windows如何安装OpenSSL: 官网:https://www.openssl.org/community/mailinglists.html  ...

  2. Memcache未授权访问漏洞简单修复方法

    漏洞描述: memcache是一套常用的key-value缓存系统,由于它本身没有权限控制模块,所以开放在外网的memcache服务很容易被攻击者扫描发现,通过命令交互可直接读取memcache中的敏 ...

  3. LuoguP5540:【模板】最小乘积生成树(几何逼近)

    题意:给定N点,M边,每条边有两个属性(a,b),现在让你选N-1条边出来,然后使得∑a*∑b最小.N<200,M<1e4: 思路:我们把∑a看成x,∑b看成y,那么一个方案对应一个二维坐 ...

  4. js提取DOM属性和设置DOM属性值

    <style type="text/css"> #div1{width:100px;height:100px;} #div2{background} </styl ...

  5. Browser cannot find PAC because wpad hostname cannot be resolved

    Enterprise Network administrator may faultly forget to configure wpad hostname to DNS server. If use ...

  6. gnome 3 插件设置

    插件安装及管理方法 应该需提前在gnome-tweaks中打开user-theme,重启电脑后才可找到Add-ons Debian9 下在应用商店插件add-ons里进行选择安装,在应用商店已安装应用 ...

  7. priority_queue(优先队列)使用方法

    priority_queue默认是一个大根堆: 并且出队方式与普通队列queue的front不一样,是top . 如果想用小根堆,可以修改定义时的参数: priority_queue<int,v ...

  8. 洛谷 P1508

    P1508 所属知识点:DP 主要题意: 就是求一个矩阵从下边走到上边,可以走自己前方或左前方或右前方. 问走到上边一共经过的路径和. 类型题:P1216 解题思路: 参考上边的类型题(因为比较简单) ...

  9. Windows平台搭建NodeJs开发环境以及HelloWorld展示—图解

    Windows 7系统下搭建NodeJs开发环境(NodeJs+WebStrom)以及Hello World!展示,大体思路如下:第一步:安装NodeJs运行环境.第二步:安装WebStrom开发工具 ...

  10. React 获取真实Dom v8.6.2版本

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...