Ablation Study
We often come across 'ablation study' in machine learning papers, for example, in this paper with the original R-CNN, it has a section of ablation studies. But what does this means?
Well, we know that when we build a model, we usually have different components of the model. If we remove some component of the model, what's the effect on the model? This is a very coarse definition of ablation study - we want to see the contributions of some proposed components in the model by comparing the model including this component with that without this component.
In the above paper, in order to see the effect of fine-tuning of the CNN, the authors analyzed the performance of the model with the fine-tuning and the performance of it without the fine-tuning. This way, we can easily see the effect of the fine-tuning.
The following I copied from the answer of Jonathan Uesato on Quora, it explains very well:
- An LSTM has 4 gates: feature, input, output, forget. We might ask: are all 4 necessary? What if I remove one? Indeed, lots of experimentation has gone into LSTM variants, the GRU being a notable example (which is simpler).
- If certain tricks are used to get an algorithm to work, it’s useful to know whether the algorithm is robust to removing these tricks. For example, DeepMind’s original DQN paper reports using (1) only periodically updating the reference network and (2) using a replay buffer rather than updating online. It’s very useful for the research community to know that both these tricks are necessary, in order to build on top of these results.
- If an algorithm is a modification of a previous work, and has multiple differences, researchers want to know what the key difference is.
- Simpler is better (inductive prior towards simpler model classes). If you can get the same performance with two models, prefer the simpler one.
Ablation Study的更多相关文章
- 深度学习研究理解5:Visualizing and Understanding Convolutional Networks(转)
Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主 ...
- 《DSOD:Learning Deeply Supervised Object Detectors from Scratch》翻译
原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架, ...
- 论文笔记(2):Deep Crisp Boundaries: From Boundaries to Higher-level Tasks
---------------------------------------------------------------------------------------------------- ...
- SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)
Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...
- [Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p. ...
- [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...
- (转)The Evolved Transformer - Enhancing Transformer with Neural Architecture Search
The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33 ...
- Dual Attention Network for Scene Segmentation
Dual Attention Network for Scene Segmentation 原始文档 https://www.yuque.com/lart/papers/onk4sn 在本文中,我们通 ...
- 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...
随机推荐
- Nginx 核心配置-location的登录账户认证实战篇
Nginx 核心配置-location的登录账户认证实战篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.使用ab命令模拟网站攻击 1>.安装httpd-tools工具 ...
- PAT 乙级 1039.到底买不买 C++/Java
题目来源 小红想买些珠子做一串自己喜欢的珠串.卖珠子的摊主有很多串五颜六色的珠串,但是不肯把任何一串拆散了卖.于是小红要你帮忙判断一下,某串珠子里是否包含了全部自己想要的珠子?如果是,那么告诉她有多少 ...
- Kubernetes 资源对象
概述 我将它们简单的分类为以下几种资源对象: 类别 名称 资源对象 Pod.ReplicaSet.ReplicationController.Deployment.StatefulSet.Daemon ...
- jQuery中关于Ajax的详解
原文来自:http://developer.51cto.com/art/201205/335732.htm Ajax让用户页面丰富起来, 增强用户体验. Ajax是所有Web开发的必修课. 虽然Aja ...
- 2019 qbxt CSP-S考前冲刺班总结
似乎--也没有太多好说的. 但这是最后一次培训,因此还是应该写点什么的. 记得状态最好的一次培训,是高一的第一次培训.那次是总共的第二次培训.第一次去的时候什么也不会,跟的非常吃力,每天都在疯 ...
- 【贪心】【P5521】[yLOI2019] 梅深不见冬
B [yLOI2019] 梅深不见冬 Background 风,吹起梅岭的深冬:霜,如惊涛一样汹涌:雪,飘落后把所有烧成空, 像这场,捕捉不到的梦. 醒来时已是多年之久,宫门铜环才长了铁锈, 也开始生 ...
- nginx设置防盗链
1.一般的防盗链设置: location ~* \.(gif|jpg|png|jpeg)$ { expires 30d; valid_referers none blocke *.julyy.site ...
- FreeSql 访问 Oracle 解决大小写问题
方法一 new FreeSqlBuilder() .UseSyncStructureToUpper(true) .Build() 方法二 全局转换实体属性名方法,这种只能转属性. 其实是通过Aop方法 ...
- 分布式系统全局唯一ID生成
一 什么是分布式系统唯一ID 在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识. 如在金融.电商.支付.等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息, ...
- Javascript Asynchronous Investigation
介绍 同步任务:在主线程上排队执行的任务,只有前一个任务执行完毕,才能执行后一个任务: 异步任务:不进入主线程,而进入任务队列中的任务,只有任务队列通知主线程,某个异步任务可以执行了,这个任务才会进入 ...