题目:

关于动态规划类题目的思路如何找在上一篇博客 https://www.cnblogs.com/niuyourou/p/11964842.html 讲的非常清楚了,该博客也成为了了leetcode中戳气球题目点赞和阅读最多的题解(虽然题解本身就很少)。

本题的解题路径与上述博客一致,也是从 递归分治动态规划

各个解法之间的过渡不再赘述,有兴趣的朋友可以看看我的上述博客。https://www.cnblogs.com/niuyourou/p/11964842.html

这次我们只贴关键代码供各位参考:

递归搜索解法:

  /**
* @Author Nxy
* @Date 2019/12/21
* @Param
* @Return
* @Exception
* @Description 递归搜索
*/
int i = 0; public int combinationSum4(int[] nums, int target) {
if (nums == null) {
return 0;
}
combinationSum4(nums, 0, target);
return i;
} public void combinationSum4(int[] nums, int beforeRe, int target) {
if (beforeRe > target) {
return;
}
if (beforeRe == target) {
i++;
return;
}
int length = nums.length;
for (int i = 0; i < length; i++) {
int tempRe = beforeRe + nums[i];
combinationSum4(nums, tempRe, target);
}
}

分治解法:

状态转移方程:dp[i] = sum{ dp[i - num] for num in nums and if i >= num }

    /**
* @Author Nxy
* @Date 2019/12/21
* @Param
* @Return
* @Exception
* @Description 分治加缓存
*/
public int combinationSum4II(int[] nums, int target) {
if (nums == null) {
return 0;
}
int length = nums.length;
Map<Integer, Integer> cache = new HashMap<Integer, Integer>();
return combinationSum4II(nums, target, length, cache);
} public int combinationSum4II(int[] nums, int target, int length, Map<Integer, Integer> cache) {
if (target < 0) {
return 0;
}
if (target == 0) {
return 1;
}
Set s = cache.keySet();
if (s.contains(target)) {
return cache.get(target);
}
int temp = 0;
for (int i = 0; i < length; i++) {
temp += combinationSum4II(nums, target - nums[i], length, cache);
}
cache.put(target, temp);
return temp;
}

从递归到分治的效率提升:

 动态规划解法:

/**
* @Author Nxy
* @Date 2019/12/21
* @Param
* @Return
* @Exception
* @Description DP解法
*/
public int combinationSum4III(int[] nums, int target){
if(nums==null){return 0;}
int length=nums.length;
int[] cache=new int[target+1];
cache[0]=1;
for(int i=1;i<=target;i++){
int temp=0;
for(int j=0;j<length;j++){
if(i-nums[j]==0){
temp++;
continue;
}
if(i-nums[j]>0){
temp+=cache[i-nums[j]];
}
}
cache[i]=temp;
}
return cache[target];
}

效率提升:

递归太费时,我们单独看下分治到动态规划的效率提升:

leetcode组合总和 Ⅳ 解题路径的更多相关文章

  1. 图解Leetcode组合总和系列——回溯(剪枝优化)+动态规划

    Leetcode组合总和系列--回溯(剪枝优化)+动态规划 组合总和 I 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 ...

  2. 34,Leetcode 组合总和I,II -C++ 回溯法

    I 题目描述 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合.candidates 中的数字可以无 ...

  3. LeetCode 组合总和(dfs)

    题目 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重 ...

  4. Leetcode题目39.组合总和(回溯+剪枝-中等)

    题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无 ...

  5. Leetcode 377.组合总和IV

    组合总和IV 给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数. 示例: nums = [1, 2, 3] target = 4 所有可能的组合为: (1, 1, 1, ...

  6. Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III)

    Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III) 同类题目: Leetcode之回溯法专题-39. 组合总数(Combination Sum) Lee ...

  7. Leetcode之回溯法专题-40. 组合总和 II(Combination Sum II)

    Leetcode之回溯法专题-40. 组合总和 II(Combination Sum II) 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使 ...

  8. [LeetCode] 39. 组合总和

    题目链接 : https://leetcode-cn.com/problems/combination-sum/ 题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ...

  9. LeetCode刷题笔记-回溯法-组合总和问题

    题目描述: <组合总和问题>给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. cand ...

随机推荐

  1. MySQL实战45讲学习笔记:第二十七讲

    一.一主多从的切换正确性 在前面的第24.25和26篇文章中,我和你介绍了 MySQL 主备复制的基础结构,但这些都是一主一备的结构. 大多数的互联网应用场景都是读多写少,因此你负责的业务,在发展过程 ...

  2. Paper | U-Net: Convolutional Networks for Biomedical Image Segmentation

    目录 故事背景 U-Net 具体结构 损失 数据扩充 发表在2015 MICCAI.原本是一篇医学图像分割的论文,但由于U-Net杰出的网络设计,得到了8k+的引用. 摘要 There is larg ...

  3. thinkPHP5 添加新模块

    1. 修改build.php文件 , 添加新模块 2. cmd 运行命令 php think build --config build.php

  4. Java List<T> 去重

    1.List<T>,是个泛型,实际业务里,它经常是一个bean,例如Person类,里面有age.name等属性. 2.如果List<Person>  ps 有重复的数据,我们 ...

  5. Java实现输出“杨辉三角”

    import java.util.Scanner; public class SumTrangles { public static void func(int n) { if (n < 0) ...

  6. 金山云笔试题:AKM函数

    1. 题目描述 /** 阿克曼(Ackmann)函数 [题目描述] 阿克曼(Ackmann)函数A(m,n)中,m,n定义域是非负整数(m<=3,n<=10),函数值定义为: akm(m, ...

  7. 微信jssdk的getLocalImgData拿到的base64不完整

    最近上传图片接口突然出现偶尔报错,错误内容是 图片的base64 在调用 Convert.FromBase64String 报错了. 我从log里面拿到一些 出错的 base64. 发现都有一个特征 ...

  8. 原生js实现append()方法

    一.在使用jquery时,append() 方法在被选元素的结尾(仍然在内部)插入指定内容 使用方法:$(selector).append(content),content为必需的.规定要插入的内容( ...

  9. 项目整合SpringDataRedis

    1:准备工作 先导入redis和jedis依赖,在配置redis-config.properties 和applicationContext-redis.xml (详细配置信息及入门demo见我上一篇 ...

  10. 【模板】gcd和exgcd

    1. gcd: int gcd(int a,int b) { return !b?a:gcd(b,a%b); } exgcd: int exgcd(int a,int b,int& x,int ...