推荐系统遇上深度学习(五)--Deep&Cross Network模型理论和实践

发表: 2018-04-22

推荐系统遇上深度学习系列:
推荐系统遇上深度学习(一)--FM模型理论和实践:https://www.jianshu.com/p/152ae633fb00
推荐系统遇上深度学习(二)--FFM模型理论和实践:https://www.jianshu.com/p/781cde3d5f3d
推荐系统遇上深度学习(三)--DeepFM模型理论和实践:
https://www.jianshu.com/p/6f1c2643d31b
推荐系统遇上深度学习(四)--多值离散特征的embedding解决方案:https://www.jianshu.com/p/4a7525c018b2

1、原理

Deep&Cross Network模型我们下面将简称DCN模型:

一个DCN模型从嵌入和堆积层开始,接着是一个交叉网络和一个与之平行的深度网络,之后是最后的组合层,它结合了两个网络的输出。完整的网络模型如图:

嵌入和堆叠层
我们考虑具有离散和连续特征的输入数据。在网络规模推荐系统中,如CTR预测,输入主要是分类特征,如“country=usa”。这些特征通常是编码为独热向量如“[ 0,1,0 ]”;然而,这往往导致过度的高维特征空间大的词汇。

为了减少维数,我们采用嵌入过程将这些离散特征转换成实数值的稠密向量(通常称为嵌入向量):

然后,我们将嵌入向量与连续特征向量叠加起来形成一个向量:

拼接起来的向量X0将作为我们Cross Network和Deep Network的输入

Cross Network
交叉网络的核心思想是以有效的方式应用显式特征交叉。交叉网络由交叉层组成,每个层具有以下公式:

一个交叉层的可视化如图所示:

可以看到,交叉网络的特殊结构使交叉特征的程度随着层深度的增加而增大。多项式的最高程度(就输入X0而言)为L层交叉网络L + 1。如果用Lc表示交叉层数,d表示输入维度。然后,参数的数量参与跨网络参数为:d * Lc * 2 (w和b)

交叉网络的少数参数限制了模型容量。为了捕捉高度非线性的相互作用,模型并行地引入了一个深度网络。

Deep Network

深度网络就是一个全连接的前馈神经网络,每个深度层具有如下公式:

Combination Layer

链接层将两个并行网络的输出连接起来,经过一层全链接层得到输出:

如果采用的是对数损失函数,那么损失函数形式如下:

总结
DCN能够有效地捕获有限度的有效特征的相互作用,学会高度非线性的相互作用,不需要人工特征工程或遍历搜索,并具有较低的计算成本。
论文的主要贡献包括:

1)提出了一种新的交叉网络,在每个层上明确地应用特征交叉,有效地学习有界度的预测交叉特征,并且不需要手工特征工程或穷举搜索。
2)跨网络简单而有效。通过设计,各层的多项式级数最高,并由层深度决定。网络由所有的交叉项组成,它们的系数各不相同。
3)跨网络内存高效,易于实现。
4)实验结果表明,交叉网络(DCN)在LogLoss上与DNN相比少了近一个量级的参数量。

这个是从论文中翻译过来的,哈哈。

2、实现解析

本文的代码根据之前DeepFM的代码进行改进,我们只介绍模型的实现部分,其他数据处理的细节大家可以参考我的github上的代码:
https://github.com/princewen/tensorflow_practice/tree/master/Basic-DCN-Demo

数据下载地址:https://www.kaggle.com/c/porto-seguro-safe-driver-prediction

不去下载也没关系,我在github上保留了几千行的数据用作模型测试。

模型输入

模型输入

模型的输入主要有下面几个部分:

self.feat_index = tf.placeholder(tf.int32,
shape=[None,None],
name='feat_index')
self.feat_value = tf.placeholder(tf.float32,
shape=[None,None],
name='feat_value') self.numeric_value = tf.placeholder(tf.float32,[None,None],name='num_value') self.label = tf.placeholder(tf.float32,shape=[None,1],name='label')
self.dropout_keep_deep = tf.placeholder(tf.float32,shape=[None],name='dropout_deep_deep')

可以看到,这里与DeepFM相比,一个明显的变化是将离散特征和连续特征分开,连续特征不在转换成embedding进行输入,所以我们的输入共有五部分。
feat_index是离散特征的一个序号,主要用于通过embedding_lookup选择我们的embedding。feat_value是对应离散特征的特征值。numeric_value是我们的连续特征值。label是实际值。还定义了两个dropout来防止过拟合。

权重构建

权重主要包含四部分,embedding层的权重,cross network中的权重,deep network中的权重以及最后链接层的权重,我们使用一个字典来表示:

def _initialize_weights(self):
weights = dict() #embeddings
weights['feature_embeddings'] = tf.Variable(
tf.random_normal([self.cate_feature_size,self.embedding_size],0.0,0.01),
name='feature_embeddings')
weights['feature_bias'] = tf.Variable(tf.random_normal([self.cate_feature_size,1],0.0,1.0),name='feature_bias') #deep layers
num_layer = len(self.deep_layers)
glorot = np.sqrt(2.0/(self.total_size + self.deep_layers[0])) weights['deep_layer_0'] = tf.Variable(
np.random.normal(loc=0,scale=glorot,size=(self.total_size,self.deep_layers[0])),dtype=np.float32
)
weights['deep_bias_0'] = tf.Variable(
np.random.normal(loc=0,scale=glorot,size=(1,self.deep_layers[0])),dtype=np.float32
) for i in range(1,num_layer):
glorot = np.sqrt(2.0 / (self.deep_layers[i - 1] + self.deep_layers[i]))
weights["deep_layer_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.deep_layers[i - 1], self.deep_layers[i])),
dtype=np.float32) # layers[i-1] * layers[i]
weights["deep_bias_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(1, self.deep_layers[i])),
dtype=np.float32) # 1 * layer[i] for i in range(self.cross_layer_num): weights["cross_layer_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.total_size,1)),
dtype=np.float32)
weights["cross_bias_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.total_size,1)),
dtype=np.float32) # 1 * layer[i] # final concat projection layer input_size = self.total_size + self.deep_layers[-1] glorot = np.sqrt(2.0/(input_size + 1))
weights['concat_projection'] = tf.Variable(np.random.normal(loc=0,scale=glorot,size=(input_size,1)),dtype=np.float32)
weights['concat_bias'] = tf.Variable(tf.constant(0.01),dtype=np.float32) return weights

计算网络输入
这一块我们要计算两个并行网络的输入X0,我们需要将离散特征转换成embedding,同时拼接上连续特征:

# model
self.embeddings = tf.nn.embedding_lookup(self.weights['feature_embeddings'],self.feat_index) # N * F * K
feat_value = tf.reshape(self.feat_value,shape=[-1,self.field_size,1])
self.embeddings = tf.multiply(self.embeddings,feat_value) self.x0 = tf.concat([self.numeric_value,
tf.reshape(self.embeddings,shape=[-1,self.field_size * self.embedding_size])]
,axis=1)

Cross Network
根据论文中的计算公式,一步步计算得到cross network的输出:

# cross_part
self._x0 = tf.reshape(self.x0, (-1, self.total_size, 1))
x_l = self._x0
for l in range(self.cross_layer_num):
x_l = tf.tensordot(tf.matmul(self._x0, x_l, transpose_b=True),
self.weights["cross_layer_%d" % l],1) + self.weights["cross_bias_%d" % l] + x_l self.cross_network_out = tf.reshape(x_l, (-1, self.total_size))

Deep Network
这一块就是一个多层全链接神经网络:

self.y_deep = tf.nn.dropout(self.x0,self.dropout_keep_deep[0])

for i in range(0,len(self.deep_layers)):
self.y_deep = tf.add(tf.matmul(self.y_deep,self.weights["deep_layer_%d" %i]), self.weights["deep_bias_%d"%i])
self.y_deep = self.deep_layers_activation(self.y_deep)
self.y_deep = tf.nn.dropout(self.y_deep,self.dropout_keep_deep[i+1])

Combination Layer
最后将两个网络的输出拼接起来,经过一层全链接得到最终的输出:

# concat_part
concat_input = tf.concat([self.cross_network_out, self.y_deep], axis=1) self.out = tf.add(tf.matmul(concat_input,self.weights['concat_projection']),self.weights['concat_bias'])

定义损失
这里我们可以选择logloss或者mse,并加上L2正则项:

# loss
if self.loss_type == "logloss":
self.out = tf.nn.sigmoid(self.out)
self.loss = tf.losses.log_loss(self.label, self.out)
elif self.loss_type == "mse":
self.loss = tf.nn.l2_loss(tf.subtract(self.label, self.out))
# l2 regularization on weights
if self.l2_reg > 0:
self.loss += tf.contrib.layers.l2_regularizer(
self.l2_reg)(self.weights["concat_projection"])
for i in range(len(self.deep_layers)):
self.loss += tf.contrib.layers.l2_regularizer(
self.l2_reg)(self.weights["deep_layer_%d" % i])
for i in range(self.cross_layer_num):
self.loss += tf.contrib.layers.l2_regularizer(
self.l2_reg)(self.weights["cross_layer_%d" % i])

剩下的代码就不介绍啦!

好啦,本文只是提供一个引子,有关DCN的知识大家可以更多的进行学习呦。

参考文章:

1、https://blog.csdn.net/roguesir/article/details/79763204
2、论文:https://arxiv.org/abs/1708.05123

本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。
 
 

O2O场景下的推荐排序模型:的更多相关文章

  1. 美团在O2O场景下的广告营销

    美团作为中国最大的在线本地生活服务平台,覆盖了餐饮.酒店.旅行.休闲娱乐.外卖配送等方方面面生活场景,连接了数亿用户和数百万商户.如何帮助本地商户开展在线营销,使得他们能快速有效地触达目标用户群体提升 ...

  2. Entity Framework:如果允许模型处于非法状态,在某些场景下,记得清空DbContext

    Entity Framework:如果允许模型处于非法状态,在某些场景下,记得清空DbContext 背景 之前写过两篇文章介绍模型的合法性: DDD:关于模型的合法性,Entity.IsValid( ...

  3. 深度排序模型概述(一)Wide&Deep/xDeepFM

    本文记录几个在广告和推荐里面rank阶段常用的模型.广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征.模型即使到现在DeepFM类 ...

  4. 大厂技术实现 | 腾讯信息流推荐排序中的并联双塔CTR结构 @推荐与计算广告系列

    作者:韩信子@ShowMeAI,Joan@腾讯 地址:http://www.showmeai.tech/article-detail/tencent-ctr 声明:版权所有,转载请联系平台与作者并注明 ...

  5. CI Weekly #11 | 微服务场景下的自动化测试与持续部署

    又一周过去了,最近我们的工程师正在搞一个"大事情" --「[flow.ci](http://flow.ci/?utm_source=bokeyuan&utm_medium= ...

  6. 亿级流量场景下,大型缓存架构设计实现【1】---redis篇

    *****************开篇介绍**************** -------------------------------------------------------------- ...

  7. 10.多shard场景下relevence score可能不准确

    主要知识点 多shard场景下relevence score可能不准确的原因 多shard场景下relevence score可能不准确解决方式     一.多shard场景下relevance sc ...

  8. 难道主键除了自增就是GUID?支持k8s等分布式场景下的id生成器了解下

    背景 主键(Primary Key),用于唯一标识表中的每一条数据.所以,一个合格的主键的最基本要求应该是唯一性. 那怎么保证唯一呢?相信绝大部分开发者在刚入行的时候选择的都是数据库的自增id,因为这 ...

  9. 硬核测试:Pulsar 与 Kafka 在金融场景下的性能分析

    背景 Apache Pulsar 是下一代分布式消息流平台,采用计算存储分层架构,具备多租户.高一致.高性能.百万 topic.数据平滑迁移等诸多优势.越来越多的企业正在使用 Pulsar 或者尝试将 ...

随机推荐

  1. 小程序-tabBar简易版

    <!-- 结构 --> <view class="wrapper"> <block wx:for="{{desc}}"> & ...

  2. 【转】ServletContext介绍及用法

    1.1.  介绍 ServletContext官方叫servlet上下文.服务器会为每一个工程创建一个对象,这个对象就是ServletContext对象.这个对象全局唯一,而且工程内部的所有servl ...

  3. Java 基础系列:不变性

    1.1 定义 不可变类(Immutable Objects):当类的实例一经创建,其内容便不可改变,即无法修改其成员变量. 可变类(Mutable Objects):类的实例创建后,可以修改其内容. ...

  4. 这几款我私藏的Markdown编辑器,今天分享给你

    相信很多人都使用 Markdown 来编写文章,Markdown 语法简洁,使用起来很是方便,而且各大平台几乎都已支持 Markdown 语法 那么,如何选择一款趁手的 Markdown 编辑器,就是 ...

  5. Identity Server4资料

    https://www.cnblogs.com/cgzl/p/9405796.html https://www.cnblogs.com/cgzl/p/7780559.html https://clou ...

  6. CSS改变浏览器默认滚动条样式

    前言 最近总是看到某网站滚动条不是浏览器默认样式,而是自定义样式   比如我博客的滚动条,自定义滚动条样式和hover前后的效果 顿时来了兴致和有一个疑问,这是怎么实现的呢? 解决   注:经测试,目 ...

  7. Kubernetes 弹性伸缩全场景解析(三) - HPA 实践手册

    在上一篇文章中,给大家介绍和剖析了 HPA 的实现原理以及演进的思路与历程.本文我们将会为大家讲解如何使用 HPA 以及一些需要注意的细节. autoscaling/v1 实践 v1 的模板可能是大家 ...

  8. 机器学习(九)-------- 聚类(Clustering) K-均值算法 K-Means

    无监督学习 没有标签 聚类(Clustering) 图上的数据看起来可以分成两个分开的点集(称为簇),这就是为聚类算法. 此后我们还将提到其他类型的非监督学习算法,它们可以为我们找到其他类型的结构或者 ...

  9. WPF ListView ,XML

    <?xml version="1.0" encoding="utf-8" ?><PersonList> <Person Id=&q ...

  10. PIE调用Python获得彩色直方图

    前段时间我一直在研究PIE SDK与Python的结合,因为在我的开发中,我想获取一张图片的统计直方图,虽然在SDK中有提供关于直方图的类接口(如IStatsHistogram 接口.Histogra ...