大数据-使用Hive导入10G数据
前言
Hadoop和Hive的环境已经搭建起来了,开始导入数据进行测试。我的数据1G大概对应500W行,MySQL的查询500W行大概3.29秒,用hive同样的查询大概30秒。如果我们把数据增加到10G,100G,让我们来看看Hive的表现吧。
目录
- 导出MySQL数据
- 导入到Hive
- 优化导入过程Hive Bucket
- 执行查询
1. 导出MySQL数据
下面是我的表,每天会产生一新表,用日期的方式命名。今天是2013年7月19日,对应的表是cb_hft,记录数646W条记录。
mysql> show tables;
+-----------------+
| Tables_in_CB |
+-----------------+
| NSpremium |
| cb_hft |
| cb_hft_20130710 |
| cb_hft_20130712 |
| cb_hft_20130715 |
| cb_hft_20130716 |
+-----------------+
6 rows in set (0.00 sec)
mysql> select count(1) from cb_hft;
+----------+
| count(1) |
+----------+
| 6461338 |
+----------+
1 row in set (3.29 sec)
快速复制表:
由于这个表是离线系统的,没有线上应用,我重命名表cb_hft为cb_hft_20130719,再复制表结构。
mysql> RENAME TABLE cb_hft TO cb_hft_20130719;
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE cb_hft like cb_hft_20130719;
Query OK, 0 rows affected (0.02 sec)
mysql> show tables;
+-----------------+
| Tables_in_CB |
+-----------------+
| NSpremium |
| cb_hft |
| cb_hft_20130710 |
| cb_hft_20130712 |
| cb_hft_20130715 |
| cb_hft_20130716 |
| cb_hft_20130719 |
+-----------------+
7 rows in set (0.00 sec)
导出表到csv
以hft_20130712表为例
mysql> SELECT
SecurityID,TradeTime,PreClosePx,OpenPx,HighPx,LowPx,LastPx,
BidSize1,BidPx1,BidSize2,BidPx2,BidSize3,BidPx3,BidSize4,BidPx4,BidSize5,BidPx5,
OfferSize1,OfferPx1,OfferSize2,OfferPx2,OfferSize3,OfferPx3,OfferSize4,OfferPx4,OfferSize5,OfferPx5,
NumTrades,TotalVolumeTrade,TotalValueTrade,PE,PE1,PriceChange1,PriceChange2,Positions
FROM cb_hft_20130712
INTO OUTFILE '/tmp/export_cb_hft_20130712.csv' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';
Query OK, 6127080 rows affected (2 min 55.04 sec)
查看数据文件
~ ls -l /tmp
-rw-rw-rw- 1 mysql mysql 1068707117 Jul 19 15:59 export_cb_hft_20130712.csv
2. 导入到Hive
登陆c1.wtmart.com机器,下载数据文件
~ ssh cos@c1.wtmart.com
~ cd /home/cos/hadoop/sqldb
~ scp -P 10003 cos@d2.wtmart.com:/tmp/export_cb_hft_20130712.csv .
export_cb_hft_20130712.csv 100% 1019MB 39.2MB/s 00:26
在hive上建表
~ bin/hive shell
#删除已存在的表
hive> DROP TABLE IF EXISTS t_hft_tmp;
Time taken: 4.898 seconds
#创建t_hft_tmp表
hive> CREATE TABLE t_hft_tmp(
SecurityID STRING,TradeTime STRING,
PreClosePx DOUBLE,OpenPx DOUBLE,HighPx DOUBLE,LowPx DOUBLE,LastPx DOUBLE,
BidSize1 DOUBLE,BidPx1 DOUBLE,BidSize2 DOUBLE,BidPx2 DOUBLE,BidSize3 DOUBLE,BidPx3 DOUBLE,BidSize4 DOUBLE,BidPx4 DOUBLE,BidSize5 DOUBLE,BidPx5 DOUBLE,
OfferSize1 DOUBLE,OfferPx1 DOUBLE,OfferSize2 DOUBLE,OfferPx2 DOUBLE,OfferSize3 DOUBLE,OfferPx3 DOUBLE,OfferSize4 DOUBLE,OfferPx4 DOUBLE,OfferSize5 DOUBLE,OfferPx5 DOUBLE,
NumTrades INT,TotalVolumeTrade DOUBLE,TotalValueTrade DOUBLE,PE DOUBLE,PE1 DOUBLE,PriceChange1 DOUBLE,PriceChange2 DOUBLE,Positions DOUBLE
) PARTITIONED BY (tradeDate INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
Time taken: 0.189 seconds
#导入数据
hive> LOAD DATA LOCAL INPATH '/home/cos/hadoop/sqldb/export_cb_hft_20130712.csv' OVERWRITE INTO TABLE t_hft_tmp PARTITION (tradedate=20130712);
Copying data from file:/home/cos/hadoop/sqldb/export_cb_hft_20130712.csv
Copying file: file:/home/cos/hadoop/sqldb/export_cb_hft_20130712.csv
Loading data to table default.t_hft_tmp partition (tradedate=20130712)
Time taken: 16.535 seconds
当数据被加载至表中时,不会对数据进行任何转换。Load操作只是将数据复制至Hive表对应的位置,这个表只有一个文件,文件没有切分成多份。
hive> dfs -ls /user/hive/warehouse/t_hft_tmp/tradedate=20130712;
Found 1 items
-rw-r--r-- 1 cos supergroup 1068707117 2013-07-19 16:07 /user/hive/warehouse/t_hft_tmp/tradedate=20130712/export_cb_hft_20130712.csv
3. 优化导入过程Hive Bucket
第二步导入,我们要把刚才的一个大文件切分成多少小文件,大概按照64M一个block的要求。我们设置做16个Bucket。
新建数据表t_hft_day,并定义CLUSTERED BY,SORTED BY,16 BUCKETS
hive> CREATE TABLE t_hft_day(
SecurityID STRING,TradeTime STRING,
PreClosePx DOUBLE,OpenPx DOUBLE,HighPx DOUBLE,LowPx DOUBLE,LastPx DOUBLE,
BidSize1 DOUBLE,BidPx1 DOUBLE,BidSize2 DOUBLE,BidPx2 DOUBLE,BidSize3 DOUBLE,BidPx3 DOUBLE,BidSize4 DOUBLE,BidPx4 DOUBLE,BidSize5 DOUBLE,BidPx5 DOUBLE,
OfferSize1 DOUBLE,OfferPx1 DOUBLE,OfferSize2 DOUBLE,OfferPx2 DOUBLE,OfferSize3 DOUBLE,OfferPx3 DOUBLE,OfferSize4 DOUBLE,OfferPx4 DOUBLE,OfferSize5 DOUBLE,OfferPx5 DOUBLE,
NumTrades INT,TotalVolumeTrade DOUBLE,TotalValueTrade DOUBLE,PE DOUBLE,PE1 DOUBLE,PriceChange1 DOUBLE,PriceChange2 DOUBLE,Positions DOUBLE
) PARTITIONED BY (tradeDate INT)
CLUSTERED BY(SecurityID) SORTED BY(TradeTime) INTO 16 BUCKETS
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
从t_hft_tmp临时数据表导入到t_hft_day数据表
#强制执行装桶的操作
hive> set hive.enforce.bucketing = true;
#数据导入
hive> FROM t_hft_tmp
INSERT OVERWRITE TABLE t_hft_day
PARTITION (tradedate=20130712)
SELECT SecurityID , TradeTime ,
PreClosePx ,OpenPx ,HighPx ,LowPx ,LastPx ,
BidSize1 ,BidPx1 ,BidSize2 ,BidPx2 ,BidSize3 ,BidPx3 ,BidSize4 ,BidPx4 ,BidSize5 ,BidPx5 ,
OfferSize1 ,OfferPx1 ,OfferSize2 ,OfferPx2 ,OfferSize3 ,OfferPx3 ,OfferSize4 ,OfferPx4 ,OfferSize5 ,OfferPx5 ,
NumTrades,TotalVolumeTrade ,TotalValueTrade ,PE ,PE1 ,PriceChange1 ,PriceChange2 ,Positions
WHERE tradedate=20130712;
MapReduce Total cumulative CPU time: 8 minutes 5 seconds 810 msec
Ended Job = job_201307191356_0016
Loading data to table default.t_hft_day partition (tradedate=20130712)
Partition default.t_hft_day{tradedate=20130712} stats: [num_files: 16, num_rows: 0, total_size: 1291728298, raw_data_size: 0]
Table default.t_hft_day stats: [num_partitions: 11, num_files: 176, num_rows: 0, total_size: 10425980914, raw_data_size: 0]
6127080 Rows loaded to t_hft_day
MapReduce Jobs Launched:
Job 0: Map: 4 Reduce: 16 Cumulative CPU: 485.81 sec HDFS Read: 1068771008 HDFS Write: 1291728298 SUCCESS
Total MapReduce CPU Time Spent: 8 minutes 5 seconds 810 msec
OK
Time taken: 172.617 seconds
导入操作累计CPU时间是8分05秒,8*60+5=485秒。由于有4个Map并行,16个Reduce并行,所以实际消耗时间是172秒。
我们再看一下新表的文件是否被分片:
hive> dfs -ls /user/hive/warehouse/t_hft_day/tradedate=20130712;
Found 16 items
-rw-r--r-- 1 cos supergroup 95292536 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000000_0
-rw-r--r-- 1 cos supergroup 97136495 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000001_0
-rw-r--r-- 1 cos supergroup 90695623 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000002_0
-rw-r--r-- 1 cos supergroup 84132171 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000003_0
-rw-r--r-- 1 cos supergroup 81552397 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000004_0
-rw-r--r-- 1 cos supergroup 80580028 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000005_0
-rw-r--r-- 1 cos supergroup 73195335 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000006_0
-rw-r--r-- 1 cos supergroup 68648786 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000007_0
-rw-r--r-- 1 cos supergroup 72210159 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000008_0
-rw-r--r-- 1 cos supergroup 66851502 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000009_0
-rw-r--r-- 1 cos supergroup 69292538 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000010_0
-rw-r--r-- 1 cos supergroup 75282272 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000011_0
-rw-r--r-- 1 cos supergroup 79572724 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000012_0
-rw-r--r-- 1 cos supergroup 78151866 2013-07-19 16:19 /user/hive/warehouse/t_hft_day/tradedate=20130712/000013_0
-rw-r--r-- 1 cos supergroup 86850954 2013-07-19 16:18 /user/hive/warehouse/t_hft_day/tradedate=20130712/000014_0
-rw-r--r-- 1 cos supergroup 92282912 2013-07-19 16:19 /user/hive/warehouse/t_hft_day/tradedate=20130712/000015_0
一共16个分片。
4. 执行查询
当前1G的文件,使用Hive执行一个简单的查询:34.974秒
hive> select count(1) from t_hft_day where tradedate=20130712;
MapReduce Total cumulative CPU time: 34 seconds 670 msec
Ended Job = job_201307191356_0017
MapReduce Jobs Launched:
Job 0: Map: 7 Reduce: 1 Cumulative CPU: 34.67 sec HDFS Read: 1291793812 HDFS Write: 8 SUCCESS
Total MapReduce CPU Time Spent: 34 seconds 670 msec
6127080
Time taken: 34.974 seconds
MySQL执行同样的查询,在开始时我已经测试过3.29秒。
相差了10倍的时间,不过只有1G的数据量,是发挥不出hadoop的优势的。
接下来,按照上面的方法,我们把十几天的数据都导入到hive里面,然后再进行比较。
查看已导入hive的数据集
hive> SHOW PARTITIONS t_hft_day;
tradedate=20130627
tradedate=20130628
tradedate=20130701
tradedate=20130702
tradedate=20130703
tradedate=20130704
tradedate=20130705
tradedate=20130708
tradedate=20130709
tradedate=20130710
tradedate=20130712
tradedate=20130715
tradedate=20130716
tradedate=20130719
Time taken: 0.099 seconds
在MySQL中,对5张表进行查询。(5G数据量)
#单表:由于PreClosePx不是索引列,第一次查询
mysql> select SecurityID,20130719 as tradedate,count(1) as count from cb_hft_20130716 where PreClosePx>8.17 group by SecurityID limit 10;
+------------+-----------+-------+
| SecurityID | tradedate | count |
+------------+-----------+-------+
| 000001 | 20130719 | 5200 |
| 000002 | 20130719 | 5193 |
| 000003 | 20130719 | 1978 |
| 000004 | 20130719 | 3201 |
| 000005 | 20130719 | 1975 |
| 000006 | 20130719 | 1910 |
| 000007 | 20130719 | 3519 |
| 000008 | 20130719 | 4229 |
| 000009 | 20130719 | 5147 |
| 000010 | 20130719 | 2176 |
+------------+-----------+-------+
10 rows in set (24.60 sec)
#多表查询
select t.SecurityID,t.tradedate,t.count
from (
select SecurityID,20130710 as tradedate,count(1) as count from cb_hft_20130710 where PreClosePx>8.17 group by SecurityID
union
select SecurityID,20130712 as tradedate,count(1) as count from cb_hft_20130712 group by SecurityID
union
select SecurityID,20130715 as tradedate,count(1) as count from cb_hft_20130715 where PreClosePx>8.17 group by SecurityID
union
select SecurityID,20130716 as tradedate,count(1) as count from cb_hft_20130716 where PreClosePx>8.17 group by SecurityID
union
select SecurityID,20130719 as tradedate,count(1) as count from cb_hft_20130719 where PreClosePx>8.17 group by SecurityID ) as t
limit 10
#超过3分钟,无返回结果。
....
在Hive中,对同样的5张表进行查询。(5G数据量)
select SecurityID,tradedate,count(1) from t_hft_day where tradedate in (20130710,20130712,20130715,20130716,20130719) and PreClosePx>8.17 group by SecurityID,tradedate limit 10;
MapReduce Total cumulative CPU time: 3 minutes 56 seconds 540 msec
Ended Job = job_201307191356_0023
MapReduce Jobs Launched:
Job 0: Map: 25 Reduce: 7 Cumulative CPU: 236.54 sec HDFS Read: 6577084486 HDFS Write: 1470 SUCCESS
Total MapReduce CPU Time Spent: 3 minutes 56 seconds 540 msec
OK
000001 20130710 5813
000004 20130715 3546
000005 20130712 1820
000005 20130719 2364
000006 20130716 1910
000008 20130710 2426
000011 20130715 2113
000012 20130712 3554
000012 20130719 3756
000013 20130716 1646
Time taken: 66.32 seconds
#对以上14张表的查询
MapReduce Total cumulative CPU time: 8 minutes 40 seconds 380 msec
Ended Job = job_201307191356_0022
MapReduce Jobs Launched:
Job 0: Map: 53 Reduce: 15 Cumulative CPU: 520.38 sec HDFS Read: 14413501282 HDFS Write: 3146 SUCCESS
Total MapReduce CPU Time Spent: 8 minutes 40 seconds 380 msec
OK
000001 20130716 5200
000002 20130715 5535
000003 20130705 1634
000004 20130704 2173
000005 20130703 996
000005 20130712 1820
000006 20130702 1176
000007 20130701 2973
000007 20130710 4084
000010 20130716 2176
Time taken: 119.161 seconds
我们看到hadoop对以G为单位量级的数据增长是不敏感的,多了3倍的数据(15G),执行查询的时间是原来(5G)的两倍。而MySQL数据增长到5G,查询时间几乎是不可忍受的。
1G以下的数据是单机可以处理的,MySQL会非常好的完成查询任务。Hadoop只有在数据量大的情况下才能发挥出优势,当数据量到达10G时,MySQL的单表查询就显得就会性能不足。如果数据量到达了100G,MySQL就已经解决不了了,要通过各种优化的程序才能完成查询。
测试过程已经描述的很清楚了,我们接下来的工作就是把过程自动化。
大数据-使用Hive导入10G数据的更多相关文章
- 【转】Hive导入10G数据的测试
原博文出自于: http://blog.fens.me/hadoop-hive-10g/ 感谢! Hive导入10G数据的测试 让Hadoop跑在云端系列文章,介绍了如何整合虚拟化和Hadoop,让H ...
- Hive导入10G数据的测试
Hive导入10G数据的测试 让Hadoop跑在云端系列文章,介绍了如何整合虚拟化和Hadoop,让Hadoop集群跑在VPS虚拟主机上,通过云向用户提供存储和计算的服务. 现在硬件越来越便宜,一台非 ...
- Mysql & Hive 导入导出数据
---王燕行转列sql select split(concat_ws(',',collect_set(cast(smzq as string))),',')[1] ,split(concat_ws(' ...
- hive导入导出数据案例
查询数据: use ods;set /user.password=ODS-SH;select * from base_cdma_all limit 10; use tag_bonc;select * ...
- Hive导入导出数据的方法
Hive导入数据的方式 官网文档: LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (p ...
- PLSQL_数据泵Datapump导入导出数据IMPDP / EXPDP(概念)(Oracle数据导入导出工具)(转)
一.摘要 在平常备库和数据库迁移的时候,当遇到大的数据库的时候在用exp的时候往往是需要好几个小时,耗费大量时间.oracle10g以后可以用expdp来导出数据库花费的时间要远小于exp花费的时间, ...
- 利用PL/SQL Developer工具导出数据到excel,导入excel数据到表
使用PL/SQL Developer工具. 导出: 1.执行select 语句查询出需要导出的数据. 2.在数据列表中右键,选择save results.保存为.csv文件,然后已excel方式打开就 ...
- Oracle数据库采用数据泵方式导入导出数据
特别说明:Oralce的数据泵导入导出技术只能用在数据库服务器上,在只有客户端的机器上是无法使用数据泵技术的. 1.创建备份文件目录 mkdir d:\dmp 2.在Oralce中注册该目录,将目录 ...
- Hive 导入 parquet 格式数据
Hive 导入 parquet 数据步骤如下: 查看 parquet 文件的格式 构造建表语句 倒入数据 一.查看 parquet 内容和结构 下载地址 社区工具 GitHub 地址 命令 查看结构: ...
随机推荐
- 利用开源项目 FFMpegSharp 实现音视频提取、转码、抓图等操作
开源项目地址:https://github.com/vladjerca/FFMpegSharp 首先需要在 web.config 或 app.config 中配置 <appSettings> ...
- python爬虫—爬取英文名以及正则表达式的介绍
python爬虫—爬取英文名以及正则表达式的介绍 爬取英文名: 一. 爬虫模块详细设计 (1)整体思路 对于本次爬取英文名数据的爬虫实现,我的思路是先将A-Z所有英文名的连接爬取出来,保存在一个cs ...
- C#工具类MySqlHelper,基于MySql.Data.MySqlClient封装
源码: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Syst ...
- sql server 中取前n行字段最大值问题
例子 取前三行最大ID ID from Students)AS A 这样写得到的却是整个表的最大ID值,并不是我们需要的值 要在句中加入order by ID ID from Students ord ...
- Jenkins的使用(一)
Jenkins 介绍: Jenkins是一个独立的开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成 变成可能.前身是Huds ...
- IIS配置——常见问题
1.控制面板->程序和功能->打开或关闭Windows功能->Internet信息服务 勾选如下这些选项 2.新建一个网站 3.HTTP 错误 403.14 选择目录浏览然后启用即可 ...
- python类的构造函数
最新的 Python3.7 中(2018.07.13),对类的构造函数进行了精简. from dataclasses import dataclass @dataclass class A: x:in ...
- CTF-代码审计(1)——parse_str()变量覆盖
题目连接:http://222.18.158.226:7000/iscc.php 考点:parse_str()变量覆盖 代码: PHP知识点: 1.parse_url() 参照网址:https://w ...
- HP服务器重装centeos 6.3红屏错误码 Illegal Opcode
公司组装一个服务器要装centos 6.3 .出现一个问题 如果自动引导一切正常.如果手动分区重启后就会,红屏错误码 Illegal Opcode. 去网上问度娘各种不靠谱,有时说要 升级BIOS,从 ...
- es更新说明(dsl)
一.旧版elasticsearch-dsl 很多同学在python搜索引擎视频中关于看到的第十章elasticsearch使用中使用python创建mapping老师使用的以下代码,这些代码对于ela ...