题目传送门:LOJ #3160

简要题意:

有一个长度为 \(n\) 的序列 \(a\),初始时 \(a_i=i\) 或 \(a_i=i^2\),这取决于 \(\mathrm{type}\) 的值。

对这个序列进行 \(m\) 次操作,每次操作给定一个值 \(A_i\),把这个序列分为两部分:\(a[1:A_i]\) 和 \(a[A_i+1:n]\),然后在不改变两个序列内部相对顺序的限制下,均匀地将这两个序列混合,形成新的序列,则新的序列 \(a\) 即为这个混合而成的新序列。

\(Q\) 次询问经过了这 \(m\) 次操作后,某个位置上的值 \(a_{c_i}\) 的期望。

题解:

因为是均匀的混合,所以在所有 \(\displaystyle\binom{n}{A_i}\) 种混合方式中,所有方式出现的概率均是相等的。

首先打一个 \(30\) 分的 \(\mathcal{O}(m\cdot n^2)\) 的暴力,或观察样例可以发现:做任意多次操作后,序列 \(\mathbb{E}[a_i]\) 仍然是一次函数或二次函数。

这个结论可以这样感性理解:

  • 首先,初始时是一次函数或者二次函数,只需证明一个一次函数或二次函数经过一次操作后次数仍然不变即可。
  • 考虑 \(\mathbb{E}[a_i]=f(i)\),其中 \(f(x)\) 是关于 \(x\) 的一个一次函数或二次函数。
  • 经过一次给定的值为 \(k\) 的操作后,左边的第 \(i\) 项等于 \(f(i)\),右边的第 \(i\) 项等于 \(f(k+i)\),左右两边也是次数相同的函数。
  • 两个一次函数或二次函数形成的序列均匀混合后对应的函数,次数是不应当增加的,而因为最高次项系数符号相同,最高次项也不会被抵消,所以次数也不会减少。

那么每次只需求出前三项的值即可,前三项只有可能由左边序列的前三项(这已经求出)和右边序列的前三项(需要插值求出)组合而成,只要推一些简单的式子就可以求出新的前三项的值了。

以下是代码,复杂度 \(\mathcal{O}(m)\):

#include <cstdio>

typedef long long LL;
const int Mod = 998244353;
const int Inv2 = (Mod + 1) / 2; inline int qPow(int b, int e) {
int a = 1;
for (; e; e >>= 1, b = (LL)b * b % Mod)
if (e & 1) a = (LL)a * b % Mod;
return a;
}
inline int gInv(int x) { return qPow(x, Mod - 2); } int N, M, A, Q, Typ;
LL iN0, iN1, iN2;
int E1, E2, E3;
inline int GetX(int i) {
if (i == 1) return E1;
if (i == 2) return E2;
if (i == 3) return E3;
int SE1 = (LL)E1 * (i - 2) % Mod * (i - 3) % Mod;
int SE2 = (LL)E2 * (2 - i - i + Mod) % Mod * (i - 3) % Mod;
int SE3 = (LL)E3 * (i - 1) % Mod * (i - 2) % Mod;
return ((LL)SE1 + SE2 + SE3) * Inv2 % Mod;
} int main() {
freopen("landlords.in", "r", stdin);
freopen("landlords.out", "w", stdout);
scanf("%d%d%d", &N, &M, &Typ), --Typ;
iN0 = gInv(N), iN1 = gInv((LL)N * (N - 1) % Mod), iN2 = gInv((LL)N * (N - 1) % Mod * (N - 2) % Mod);
E1 = 1, E2 = Typ ? 4 : 2, E3 = Typ ? 9 : 3;
while (M--) {
scanf("%d", &A);
LL F1 = E1, F2 = E2, F3 = E3;
LL F4 = GetX(A + 1), F5 = GetX(A + 2), F6 = GetX(A + 3);
E1 = (F1 * A + F4 * (N - A)) % Mod * iN0 % Mod;
E2 = (F2 * A % Mod * (A - 1) + (F1 + F4) * A % Mod * (N - A) + F5 * (N - A) % Mod * (N - A - 1)) % Mod * iN1 % Mod;
E3 = (F3 * A % Mod * (A - 1) % Mod * (A - 2) + (F4 + F2 + F2) * A % Mod * (A - 1) % Mod * (N - A) + (F5 + F5 + F1) * A % Mod * (N - A) % Mod * (N - A - 1) % Mod + F6 * (N - A) % Mod * (N - A - 1) % Mod * (N - A - 2)) % Mod * iN2 % Mod;
}
scanf("%d", &Q);
for (int X; Q--; ) {
scanf("%d", &X);
printf("%d\n", GetX(X));
}
return 0;
}

LOJ 3160: 「NOI2019」斗主地的更多相关文章

  1. LOJ 3158: 「NOI2019」序列

    题目传送门:LOJ #3158. 题意简述: 给定两个长度为 \(n\) 的正整数序列 \(a,b\),要求在每个序列中都选中 \(K\) 个下标,并且要保证同时在两个序列中都被选中的下标至少有 \( ...

  2. LOJ 3159: 「NOI2019」弹跳

    题目传送门:LOJ #3159. 题意简述: 二维平面上有 \(n\) 个整点,给定每个整点的坐标 \((x_i,y_i)\). 有 \(m\) 种边,第 \(i\) 种边从 \(p_i\) 号点连向 ...

  3. LOJ 3156: 「NOI2019」回家路线

    题目传送门:LOJ #3156. 题意简述: 有一张 \(n\) 个点 \(m\) 条边的有向图,边有两个权值 \(p_i\) 和 \(q_i\)(\(p_i<q_i\))表示若 \(p_i\) ...

  4. @loj - 3157@「NOI2019」机器人

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 R 喜欢研究机器人. 最近,小 R 新研制出了两种机器人,分 ...

  5. loj3161「NOI2019」I 君的探险(随机化,整体二分)

    loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起 ...

  6. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  7. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  8. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  9. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

随机推荐

  1. [LeetCode] 491. Increasing Subsequences 递增子序列

    Given an integer array, your task is to find all the different possible increasing subsequences of t ...

  2. java的GUI之SWT框架 配置开发环境(包含但不限于WindowBuilder完整教程,解决Unknown GUI toolkit报错,解决导入SWT包错误)

    官网(资料挺多的,API文档截图以及示例都有):https://www.eclipse.org/swt/ 克隆官方仓库 git clone --depth=1 git://git.eclipse.or ...

  3. LeetCode 220. Contains Duplicate III (分桶法)

    Given an array of integers, find out whether there are two distinct indices i and j in the array suc ...

  4. TypeError: Dense_net() takes 0 positional arguments but 1 was given

    书写孪生网络的时候出现的错误,调用单通道时出现如下错误. 看了别人写的博客大概和类内的初始化还有self之类的有关系,没有弄清楚.将单通道的文件在函数外声明,在函数内统一调用可以解决这个问题

  5. (五)golang--常用的一些玩意

    \t--制表位 \n--换行符 \\--一个\ \"--一个” \r--回车 行注释://,一次性注释多行指令,选中代码后ctrl+/ 块注释:/* */ 代码规范: (1)官方推荐使用行注 ...

  6. 读了两章的 How Tomcat Works

    周一发现了一本书.How Tomcat Works 惯例先到豆瓣搜书评.结果书评出奇的好.然后下载了PDF.从简介中看,本书的每个章节都会不断的围绕怎么建造一个Tomcat讲解.我本人比较喜欢这种造轮 ...

  7. com.sun.jdi.InvocationException occurred invoking

    调试时候出现com.sun.jdi.InvocationException occurred invoking method 原因:因为hibernate的延迟加载引起 修改:修改hbm映射文件的对象 ...

  8. 《Interest Rate Risk Modeling》阅读笔记——第三章:拟合期限结构

    目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种

  9. centos下java环境搭建安装

    1. 购买服务器(阿里云) 2. 重置密码,重启服务器 3. 创建账号work groupadd work #创建组 mkdir /data # 创建数据文件夹 useradd -d /data/wo ...

  10. 【05】Jenkins:用户权限管理

    写在前面的话 在一个企业研发部门内部,可能存在多个运维人员,而这些运维人员往往负责不同的项目,但是有可能他们用的又是同一个 Jenkins 的不同用户.那么我们就希望实现一个需求,能够不同的用户登录 ...