1、k-近邻法简介

k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。

它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。

输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。

一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。

最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

2、距离度量

我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。

那么,如何进行比较呢?比如,我们还是以表1.1为例,怎么判断红色圆点标记的电影所属的类别呢? 如下图所示。

我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。

k-近邻算法用什么方法进行判断呢?没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,

可以使用我们高中学过的两点距离公式计算距离,如图1.2所示。

通过计算可知,红色圆点标记的电影到动作片 (108,5)的距离最近,为16.55。

如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,

而非k-近邻算法。那么k-近邻算法是什么呢?k-近邻算法步骤如下:

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点所出现频率最高的类别作为当前点的预测分类。

比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。

在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。

3、Python3代码实现

(1) 准备数据集合

对于表1.1中的数据,我们可以使用numpy直接创建,代码如下:

结果如下

(2)k-近邻算法

根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。

输出结果:

group [[   ]
[ ]
[ ]
[ ]]
labels ['爱情片', '爱情片', '动作片', '动作片']
datasetsize
diffmat [[ -]
[ -]
[ - ]
[- ]]
sqdiffmat [[ ]
[ ]
[ ]
[ ]]
sqdistances [ ]
distances [ 128.68954892 118.22436297 16.55294536 18.43908891]
sortedDistIndices [ ]
voteIlabel 动作片
classCount[voteIlabel]
voteIlabel 动作片
classCount[voteIlabel]
voteIlabel 爱情片
classCount[voteIlabel]
sortedClassCount [('动作片', ), ('爱情片', )]
动作片

由 模型可知, 当数据为[101,20]  ,数据数据可能为动作片

参考资料

https://cuijiahua.com/blog/2017/11/ml_1_knn.html

https://www.cnblogs.com/bonelee/p/8036024.html

https://blog.csdn.net/u011475210/article/details/77770751

机器学习-- 入门demo1 k临近算法的更多相关文章

  1. 秒懂机器学习---k临近算法(KNN)

    秒懂机器学习---k临近算法(KNN) 一.总结 一句话总结: 弄懂原理,然后要运行实例,然后多解决问题,然后想出优化,分析优缺点,才算真的懂 1.KNN(K-Nearest Neighbor)算法的 ...

  2. 机器学习(Machine Learning)算法总结-K临近算法

    一.算法详解 1.什么是K临近算法 Cover 和 Hart在1968年提出了最初的临近算法 属于分类(classification)算法 邻近算法,或者说K最近邻(kNN,k-NearestNeig ...

  3. [Machine-Learning] K临近算法-简单例子

    k-临近算法 算法步骤 k 临近算法的伪代码,对位置类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的每个点与当前点之间的距离: 按照距离递增次序排序: 选取与当前点距离最小的k个点 ...

  4. K临近算法

    K临近算法原理 K临近算法(K-Nearest Neighbor, KNN)是最简单的监督学习分类算法之一.(有之一吗?) 对于一个应用样本点,K临近算法寻找距它最近的k个训练样本点即K个Neares ...

  5. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

  6. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  7. 02机器学习实战之K近邻算法

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...

  8. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  9. 机器学习随笔01 - k近邻算法

    算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. ...

随机推荐

  1. flask框架(四)——flask CBV视图类解析

    CBV视图类的两种基本写法 #第一种写法class IndexView(views.View): methods = ['GET'] decorators = [auth, ] def dispatc ...

  2. tft_LCD一些引脚极性设置方法:vsync, hsync, VBLANK

    转载:https://blog.csdn.net/u014170207/article/details/52662988/ 在RGB模式中,LCD数据的扫描是以行为单位的.HSYNC是水平同步信号.P ...

  3. GIT讲解

    一.什么是Git: Git是目前世界上最先进的分布式版本控制系统. 二.为什么要用版本控制系统: 1.更方便的存储版本 2.恢复之前的版本 3.更方便的进行对比 4.协同合作 三.如何安装GIT: 1 ...

  4. Nginx限制访问速率和最大并发连接数模块--limit (防范DDOS攻击)

    Tengine版本采用http_limit_req_module进行限制 具体连接请参考 http://tengine.taobao.org/document_cn/http_limit_req_cn ...

  5. python爬虫-喜马拉雅_晚安妈妈睡前故事

    这里先说下思路: 1.首先要获取当前书的音频信息 '''获取当前书的音频信息''' all_list = [] for url in self.book_url: r = requests.get(u ...

  6. Helm命令日常使用

    更换仓库 默认的stable仓库地址是:https://kubernetes-charts.storage.googleapis.com 若遇到Unable to get an update from ...

  7. ByteBuf源码

    ByteBuf是顶层的抽象类,定义了用于传输数据的ByteBuf需要的方法和属性. AbstractByteBuf 直接继承ByteBuf,一些公共属性和方法的公共逻辑会在这里定义.例如虽然不同性质的 ...

  8. 修改Excel脚本

    批量修改Excel TODO: 批量修改Excel 功能: 将图片防止在本地,读取excel数据,拆分数据之后根本地照片名称对比,然后上传服务器,创建新得excel. #!/usr/bin/pytho ...

  9. 【洛谷 P3975】 [TJOI2015]弦论(后缀自动机)

    题目链接 建出后缀自动机. T=0,每个子串算一次,否则每个子串算该子串的\(endpos\)集合大小次. 用\(f[i]\)表示结点\(i\)表示的\(endpos\)集合大小,则\(f[i]\)为 ...

  10. 【OO学习】OO第三单元作业总结

    [OO学习]OO第三单元作业总结 第三单元,我们学习了JML语言,用来进行形式化设计.本单元包括三次作业,通过给定的JML来实行了一个对路径的管理系统,最后完成了一个地铁系统,来管理不同的线路,求得关 ...