noi.ac #44 链表+树状数组+思维
\(des\)
给出长度为 \(n\) 的序列,全局变量 \(t\),\(m\) 次询问,询问区间 \([l, r]\) 内出现次数为 \(t\) 的数的个数
\(sol\)
弱化问题:求区间 \([l, r]\) 内只出现一次的数的个数
对于一个右端点 \(r\),从 \(r\) 向左扫
每次遇到新出现的字符就对该点的点值 +1,
每第二次遇到出现的字符就对该点的点值 -1;
否则不进行任何改变
这样的话,对于区间 \([l, r]\) 内只出现一次的数权值都为 1
线段树或树状数组维护区间加减与区间求和
现在来看这个问题
本质上这两个问题是完全一样的
对于每个右端点 \(r\)
依旧从 \(r\) 向左扫
每遇到第 \(t\) 次出现的字符就对该点的点值 +1,
第 \(t + 1\) 次出现的字符就对该点的点值 -1
实际操作
首先题目不要求在线,这样的话就离线操作
对所有的询问按照右端点进行排序
每个 \(r\) 向前扫时都可以集成上一个 \(r\)
这样的话总的时间复杂度为 \(O(nlogn)\)
今天都快睡着了,没想这题尽然没怎么调试,只调了一下导致死循环的边界
\(code\)
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
#define gc getchar()
#define Rep(i, a, b) for(int i = a; i <= b; i ++)
#define gc getchar()
inline int read() {
int x = 0; char c = gc;
while(c < '0' || c > '9') c = gc;
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc;
return x;
}
int n, m, k, t;
int Col[N];
struct Node {
int l, r, id;
bool operator < (const Node a) const {
return this-> r == a.r ? this-> l > a.l : this-> r < a.r;
}
} Ask[N];
int Nxt[N], Pre[N], Which_t[N], Which_t2[N];
int Js[N], Leftest[N], rightest[N];
int Ans[N];
struct Node_ {
int Tree[N];
inline int Lowbit(int x) {return x & -x;}
void Add(int x, int num) {
for(; x <= n; x += Lowbit(x)) Tree[x] += num;
}
int Calc(int x) {
if(x == 0) return 0;
int ret = 0;
for(; x; x -= Lowbit(x)) ret += Tree[x];
return ret;
}
} Bit;
int have_use;
int main() {
n = read(), m = read(), k = read(), t = read();
Rep(i, 1, n) Col[i] = read();
Rep(i, 1, m) {Ask[i].l = read(), Ask[i].r = read(); Ask[i].id = i;}
sort(Ask + 1, Ask + m + 1);
int L = 1; Ask[1].r + 1;
Rep(i, 1, m) {
while(L <= Ask[i].r) {
Js[Col[L]] ++;
if(Js[Col[L]] != 1) {
Pre[L] = rightest[Col[L]];
Nxt[rightest[Col[L]]] = L;
rightest[Col[L]] = L;
}
if(Js[Col[L]] == 1) {
rightest[Col[L]] = L;
Leftest[Col[L]] = L;
}
if(Js[Col[L]] == t + 2) {
Bit.Add(Which_t2[Col[L]], 1);
Bit.Add(Which_t[Col[L]], -2);
Bit.Add(Nxt[Which_t[Col[L]]], 1);
Which_t2[Col[L]] = Which_t[Col[L]];
Which_t[Col[L]] = Nxt[Which_t[Col[L]]];
Js[Col[L]] --;
L ++;
continue;
} else if(Js[Col[L]] == t + 1) {
Bit.Add(Which_t[Col[L]], -2);
Bit.Add(Nxt[Which_t[Col[L]]], 1);
Which_t2[Col[L]] = Which_t[Col[L]];
Which_t[Col[L]] = Nxt[Which_t[Col[L]]];
} else if(Js[Col[L]] == t) {
Which_t[Col[L]] = Leftest[Col[L]];
Bit.Add(Which_t[Col[L]], 1);
}
L ++;
}
for(int j = have_use + 1; j <= m; j ++) {
if(Ask[j].r != Ask[have_use + 1].r) {
have_use = j - 1; break;
}
Ans[Ask[j].id] = Bit.Calc(Ask[j].r) - Bit.Calc(Ask[j].l - 1);
if(j == m) have_use = m;
}
i = have_use;
}
Rep(i, 1, m) printf("%d\n", Ans[i]);
return 0;
}
noi.ac #44 链表+树状数组+思维的更多相关文章
- 【BZOJ2434】阿狸的打字机(AC自动机,树状数组)
[BZOJ2434]阿狸的打字机(AC自动机,树状数组) 先写个暴力: 每次打印出字符串后,就插入到\(Trie\)树中 搞完后直接搭\(AC\)自动机 看一看匹配是怎么样的: 每次沿着\(AC\)自 ...
- 【BZOJ2434】【NOI2011】阿狸的打字机(AC自动机,树状数组)
[BZOJ2434]阿狸的打字机(AC自动机,树状数组) 先写个暴力: 每次打印出字符串后,就插入到\(Trie\)树中 搞完后直接搭\(AC\)自动机 看一看匹配是怎么样的: 每次沿着\(AC\)自 ...
- 【BZOJ3295】【块状链表+树状数组】动态逆序对
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
- 【BZOJ4548】小奇的糖果 set(链表)+树状数组
[BZOJ4548]小奇的糖果 Description 有 N 个彩色糖果在平面上.小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果.求出最多能够拾起多少糖果,使得获得的糖果并不包含所有的 ...
- Codeforces 163E(ac自动机、树状数组)
要点 显然ac自动机的板子就可以暴力一下答案了 为了优化时间复杂度,考虑套路fail树的dfs序.发现本题需要当前这个尾点加上所有祖先点的个数,考虑使用树状数组差分一下,在父点+1,在子树后-1,每次 ...
- 【树状数组 思维题】luoguP3616 富金森林公园
树状数组.差分.前缀和.离散化 题目描述 博艾的富金森林公园里有一个长长的富金山脉,山脉是由一块块巨石并列构成的,编号从1到N.每一个巨石有一个海拔高度.而这个山脉又在一个盆地中,盆地里可能会积水,积 ...
- BZOJ 2434 Luogu P2414 [NOI2011]阿狸的打字机 (AC自动机、树状数组)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2434 题解: 我写的是离线做法,不知道有没有在线做法. 转化一波题意,\(x\)在AC ...
- BZOJ 2754 [SCOI2012]喵星球上的点名 (AC自动机、树状数组)
吐槽: 为啥很多人用AC自动机暴力跳都过了?复杂度真的对么? 做法一: AC自动机+树状数组 姓名的问题,中间加个特殊字符连起来即可. 肯定是对点名串建AC自动机(map存儿子),然后第一问就相当于问 ...
- Bzoj4548 小奇的糖果(链表+树状数组)
题面 Bzoj 题解 很显然,我们只需要考虑单独取线段上方的情况,对于下方的把坐标取反再做一遍即可(因为我们只关心最终的答案) 建立树状数组维护一个横坐标区间内有多少个点,维护双向链表实现查询一个点左 ...
随机推荐
- 访问Harbor报502 Bad Gateway
Harbor启动都是多个容器的,首先查看一下是否有相关容器未启动 docker ps | grep harbor cae340214e57 goharbor/nginx-photon:v1.9.3 & ...
- springboot读取系统级环境变量,和读写系统属性以及unittest来获取环境变量的方法
环境变量的读取以及系统属性的设置 环境变量只能读取,不能修改,系统属性可以修改 系统变量的读取方式: System.getEnv() 系统属性有多重读取和修改方式: 其修改方式为: 读取系统属性: @ ...
- docker 入坑3
查看镜像 docker images [OPTIONS] [REPOSITORY[:TAG]] -a, --all=false -f, --filter=[] --no-trunc=false -q, ...
- DDL和DML 的区别
DDL (Data Definition Language 数据定义语言) create table 创建表 alter table 修改表 drop table 删除表 truncate table ...
- JS中的迭代器和生成器
利用迭代器生成一个遍历方法: let arr1 = [1, 2, 3, 11, 22, 13, 24]; function forOf(arr, callback) { // 找到迭代器函数 let ...
- 过渡属性transition
过渡属性:使元素变化过程可见 transition: all 1s;元素所有变化过程都可见 transition: 1s;元素所有变化过程都可见 transition: 指定属性 2s 1s;指定属性 ...
- UCOSIII消息队列
任务间消息传递2种途径 全局变量 发布消息 主结构体 typedef struct os_q OS_Q; struct os_q { /* Message Queue */ OS_OBJ_TYPE T ...
- linux基础命令之1
1.创建文件夹:mkdir 文件夹名称 2.创建文件:touch 文件名称 3.编辑文件:vi 文件名称 4.保存文件::wq
- M - Ordering Tasks(拓扑排序)
M - Ordering Tasks Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descri ...
- c# MemoryStream 类