从海量数据中寻找出topK的最优算法代码
package findMinNumIncludedTopN;
/**
* 小顶堆
* @author TongXueQiang
* @date 2016/03/09
* @since JDK 1.8
*/
public class MinHeap {
int[] heap;
int heapsize;
public MinHeap(int[] array) {
this.heap = array;
this.heapsize = heap.length;
}
/**
* 构建小顶堆
*/
public void BuildMinHeap() {
for (int i = heapsize / 2 - 1; i >= 0; i--) {
Minify(i);// 依次向上将当前子树最大堆化
}
}
/**
* 堆排序
*/
public void HeapSort() {
for (int i = 0; i < heap.length; i++) {
// 执行n次,将每个当前最大的值放到堆末尾
swap(heap,0,heapsize-1);
heapsize--;
Minify(0);
}
}
/**
* 对非叶节点调整
* @param i
*/
public void Minify(int i) {
int l = 2*i + 1;
int r = 2*i + 2;
int min;
if (l < heapsize && heap[l] < heap[i])
min = l;
else
min = i;
if (r < heapsize && heap[r] < heap[min])
min = r;
if (min == i || min >= heapsize)// 如果largest等于i说明i是最大元素
// largest超出heap范围说明不存在比i节点大的子女
return;
swap(heap,i,min);
Minify(min);
}
private void swap(int[] heap, int i, int min) {
int tmp = heap[i];// 交换i与largest对应的元素位置,在largest位置递归调用maxify
heap[i] = heap[min];
heap[min] = tmp;
}
public void IncreaseValue(int i, int val) {
heap[i] = val;
if (i >= heapsize || i <= 0 || heap[i] >= val)
return;
int p = Parent(i);
if (heap[p] >= val)
return;
heap[i] = heap[p];
IncreaseValue(p, val);
}
private int Parent(int i) {
return (i - 1) / 2;
}
}
package findMinNumIncludedTopN;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
/**
* 从海量数据中查找出前k个最大值,精确时间复杂度为:k + (n - k) * lgk,空间复杂度为 O(k),目前为所有算法中最优算法
*
* @author TongXueQiang
* @date 2016/03/08
* @since JDK 1.8
*/
public class FindMinNumIncluedTopN {
/**
* 从海量数据中查找出前k个最大值
*
* @param k
* @return
* @throws IOException
*/
public int[] findMinNumIncluedTopN(int k) throws IOException {
Long start = System.nanoTime();
int[] array = new int[k];
int index = 0;
// 从文件导入海量数据
BufferedReader reader = new BufferedReader(new FileReader(new File("F:/number.txt")));
String text = null;
// 先读出前n条数据,构建堆
do {
text = reader.readLine();
if (text != null) {
array[index++] = Integer.parseInt(text);
}
} while (text != null && index <= k - 1);
MinHeap heap = new MinHeap(array);//初始化堆
for (int i : heap.heap) {
System.out.print(i + " ");
}
heap.BuildMinHeap();//构建小顶堆
System.out.println();
System.out.println("构建小顶堆之后:");
for (int i : heap.heap) {
System.out.print(i + " ");
}
System.out.println();
// 遍历文件中剩余的n(文件数据容量,假设为无限大)-k条数据,如果读到的数据比heap[0]大,就替换之,同时更新堆
while (text != null) {
text = reader.readLine();
if (text != null && !"".equals(text.trim())) {
if (Integer.parseInt(text) > heap.heap[0]) {
heap.heap[0] = Integer.parseInt(text);
heap.Minify(0);//调整小顶堆
}
}
}
//最后对堆进行排序(默认降序)
heap.HeapSort();
Long end = System.nanoTime();
double time = (end - start) / Math.pow(10,9);
System.out.println("用时:"+ time + "秒");
for (int i : heap.heap) {
System.out.println(i);
}
return heap.heap;
}
}
从海量数据中寻找出topK的最优算法代码的更多相关文章
- 海量数据中找出前k大数(topk问题)
海量数据中找出前k大数(topk问题) 前两天面试3面学长问我的这个问题(想说TEG的3个面试学长都是好和蔼,希望能完成最后一面,各方面原因造成我无比想去鹅场的心已经按捺不住了),这个问题还是建立最小 ...
- 原创:从海量数据中查找出前k个最小或最大值的算法(java)
现在有这么一道题目:要求从多个的数据中查找出前K个最小或最大值 分析:有多种方案可以实现.一.最容易想到的是先对数据快速排序,然后输出前k个数字. 二.先定义容量为k的数组,从源数据中取出前k个填 ...
- 面试突击 | Redis 如何从海量数据中查询出某一个 Key?附视频
1 考察知识点 本题考察的知识点有以下几个: Keys 和 Scan 的区别 Keys 查询的缺点 Scan 如何使用? Scan 查询的特点 2 解答思路 Keys 查询存在的问题 Scan 的使用 ...
- 【风马一族_C】c语言版,在2到n中寻找出所有的素数
#include <iostream> #include <stdio.h> #include <math.h> /* run this program using ...
- Redis实战(20)Redis 如何从海量数据中查询出某一个 Key?
序言 资料 https://www.cnblogs.com/vipstone/p/12373734.html
- 海量数据中的TOPK问题小结
1.利用堆找出最大的K个数 首先,先理解下用堆找出最大的K个数的常用解法,例如问题是“从M(M <= 10000)个数中找出最大的K个数” (1)利用最大堆 建立一个N=M大小的大顶堆,然后输出 ...
- 海量数据处理 - 10亿个数中找出最大的10000个数(top K问题)
前两天面试3面学长问我的这个问题(想说TEG的3个面试学长都是好和蔼,希望能完成最后一面,各方面原因造成我无比想去鹅场的心已经按捺不住了),这个问题还是建立最小堆比较好一些. 先拿10000个数建堆, ...
- 【跟着子迟品 underscore】如何优雅地写一个『在数组中寻找指定元素』的方法
Why underscore (觉得这部分眼熟的可以直接跳到下一段了...) 最近开始看 underscore.js 源码,并将 underscore.js 源码解读 放在了我的 2016 计划中. ...
- hdu 1595 find the longest of the shortest【最短路枚举删边求删除每条边后的最短路,并从这些最短路中找出最长的那条】
find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others) Memory Limit: 32768/32768 ...
随机推荐
- SpringCloud微服务基础学习
看了蚂蚁课堂的微服务学习,确实学习了不少关于微服务的知识,现在总结学习如下 : SpringCloud微服务基础单点系统架构传统项目架构传统项目分为三层架构,将业务逻辑层.数据库访问层.控制层放入在一 ...
- Java——简单实现学生管理系统
import java.io.*;import java.util.ArrayList;import java.util.Scanner;class MyObjectOutputStream exte ...
- Golang中的RegExp正则表达式用法指南
------------------------------------------------------------ Golang中的正则表达式 ------------------------- ...
- 微信JS-SDK实现分享功能
1 申请一个微信公众号,并确认在开发–接口权限中拥有分享功能的权限. 2 公众号设置–功能设置:在JS接口安全域名中添加安全域名,这个安全域名不是url,只需添加一级域名即可. 3 开发,基本配置中, ...
- 自学Python编程的第九天(希望有大牛帮我看看我第一个代码是否有弊端,感谢您们)----------来自苦逼的转行人
2019-09-19-22:11:33 今天是自学Python的第九天 学的内容是有关文件操作的,如:r.w.a.rb.wb.ab.r+.w+.a+等 有大牛帮我看一下我的代码第一个有没有什么弊端吗? ...
- MySQL语法顺序及执行顺序
一.书写顺序 select[distinct] from join on where group by having union order by limit 二.执行顺序 from on join ...
- 关于justify-content属性的再学习(区分三个属性)
justify-content属性: 用来表示可伸缩项目在主轴方向上的对齐方式: 取值范围为flex-start,flex-end,center,space-between,space-around: ...
- 正则表达式修饰符 i、g、m、s、U、x、a、D、e 等。
正则表达式中常用的模式修正符有i.g.m.s.U.x.a.D.e 等. 它们之间可以组合搭配使用. i 不区分(ignore)大小写: 例如: /abc/i 可以匹配 abc.aBC.Abc g 全局 ...
- zookeeper 事务日志查看
在version下的日志是二进制文件,查看需要转换 创建/data/middleware/zookeeper-3.4.14/translog.sh 脚本 格式化命令: java -classpath ...
- jenkins使用邮件功能
jenkins发送邮件 在日常构建后,需要及时将构建结果发送给相应的人员.这时就可以使用jenkins自带的邮件配置系统. 1 开通邮箱的SMTP服务,需要发送短信验证开启 2 进入"系统管 ...