[SOJ #686]抢救(2019-11-7考试)/[洛谷P3625][APIO2009]采油区域
题目大意
有一个\(n\times m\)的网格,\((x,y)\)权值为\(a_{x,y}\),要求从中选取三个不相交的\(k\times k\)的正方形使得它们权值最大。\(n,m,k\leqslant1500\)
题解
其实,只有如下六种方法分割网格:
对于每一种情况,我们在每个小方格中找最大的\(k\times k\)的正方形相加即可。可以令\(a[i][j],b[i][j],c[i][j],d[i][j]\)分别表示\((i,j)\)的左上、右上、左下、右下的区域中最大的\(k\times k\)的正方形的权值,然后就可以计算了
卡点
无
C++ Code:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cctype>
const int maxn = 1510;
namespace io {
struct istream {
#define M (1 << 24)
char buf[M], *ch = buf - 1;
inline istream() { fread(buf, 1, M, stdin); }
inline istream& operator >> (int &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
#undef M
} cin;
}
int n, m, k, ans, s[maxn][maxn];
int a[maxn][maxn], b[maxn][maxn], c[maxn][maxn], d[maxn][maxn];
/*
* a | b
* - - -
* c | d
*/
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
io::cin >> n >> m >> k;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
io::cin >> s[i][j];
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
s[i][j] += s[i][j - 1];
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
s[i][j] += s[i - 1][j];
for (int i = n; i >= k; --i)
for (int j = m; j >= k; --j)
s[i][j] += s[i - k][j - k] - s[i - k][j] - s[i][j - k];
for (int i = k; i <= n; ++i)
for (int j = k; j <= m; ++j)
a[i][j] = std::max({ s[i][j], a[i - 1][j], a[i][j - 1] });
for (int i = k; i <= n; ++i)
for (int j = m - k + 1; j; --j)
b[i][j] = std::max({ s[i][j + k - 1], b[i - 1][j], b[i][j + 1] });
for (int i = n - k + 1; i; --i)
for (int j = k; j <= m; ++j)
c[i][j] = std::max({ s[i + k - 1][j], c[i + 1][j], c[i][j - 1] });
for (int i = n - k + 1; i; --i)
for (int j = m - k + 1; j; --j)
d[i][j] = std::max({ s[i + k - 1][j + k - 1], d[i + 1][j], d[i][j + 1] });
for (int i = k; i <= n - k; ++i)
for (int j = k; j <= m - k; ++j)
ans = std::max(ans, a[i][j] + b[i][j + 1] + c[i + 1][m]);
for (int i = k; i <= n - k; ++i)
for (int j = k; j <= m - k; ++j)
ans = std::max(ans, a[i][m] + c[i + 1][j] + d[i + 1][j + 1]);
for (int i = k; i <= n - k; ++i)
for (int j = k; j <= m - k; ++j)
ans = std::max(ans, a[i][j] + c[i + 1][j] + b[n][j + 1]);
for (int i = k; i <= n - k; ++i)
for (int j = k; j <= m - k; ++j)
ans = std::max(ans, a[n][j] + b[i][j + 1] + d[i + 1][j + 1]);
for (int i = k; i <= n; ++i)
for (int j = 2 * k; j <= m - k; ++j)
ans = std::max(ans, s[i][j] + a[n][j - k] + b[n][j + 1]);
for (int i = 2 * k; i <= n - k; ++i)
for (int j = k; j <= m; ++j)
ans = std::max(ans, s[i][j] + a[i - k][m] + c[i + 1][m]);
std::cout << ans << '\n';
return 0;
}
[SOJ #686]抢救(2019-11-7考试)/[洛谷P3625][APIO2009]采油区域的更多相关文章
- 洛谷P3625 - [APIO2009]采油区域
Portal Description 给出一个\(n\times m(n,m\leq1500)\)的矩阵,从中选出\(3\)个互不相交的\(k\times k\)方阵,使得被选出的数的和最大. Sol ...
- 洛谷 P3625 [APIO2009]采油区域【枚举】
参考:https://blog.csdn.net/FAreStorm/article/details/49200383 没有技术含量但是难想难写,枚举情况图详见参考blog懒得画了 bzoj蜜汁TTT ...
- BZOJ1178或洛谷3626 [APIO2009]会议中心
BZOJ原题链接 洛谷原题链接 第一个问题是经典的最多不相交区间问题,用贪心即可解决. 主要问题是第二个,求最小字典序的方案. 我们可以尝试从\(1\to n\)扫一遍所有区间,按顺序对每一个不会使答 ...
- BZOJ1179或洛谷3672 [APIO2009]抢掠计划
BZOJ原题链接 洛谷原题链接 在一个强连通分量里的\(ATM\)机显然都可被抢,所以先用\(tarjan\)找强连通分量并缩点,在缩点的后的\(DAG\)上跑最长路,然后扫一遍酒吧记录答案即可. # ...
- 【题解】洛谷P3627 [APIO2009]抢掠计划(缩点+SPFA)
洛谷P3627:https://www.luogu.org/problemnew/show/P3627 思路 由于有强连通分量 所以我们可以想到先把整个图缩点 缩点完之后再建一次图 把点权改为边权 并 ...
- 洛谷 P3627 [APIO2009]抢掠计划 Tarjan缩点+Spfa求最长路
题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来. ...
- 洛谷 P3627 [APIO2009]抢掠计划
这题一看就是缩点,但是缩完点怎么办呢?首先我们把所有的包含酒吧的缩点找出来,打上标记,然后建立一张新图, 每个缩点上的点权就是他所包含的所有点的点权和.但是建图的时候要注意,每一对缩点之间可能有多条边 ...
- 洛谷 P3627 [APIO2009](抢掠计划 缩点+spfa)
题目描述 Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机.令人奇怪的是,Siruseri 的酒吧也都设 ...
- [洛谷P3627][APIO2009]抢掠计划
题目大意:给你一张$n(n\leqslant5\times10^5)$个点$m(m\leqslant5\times10^5)$条边的有向图,有点权,给你起点和一些可能的终点.问从起点开始,到任意一个终 ...
随机推荐
- windows下查看webp格式图片
关于webp 时下webp格式日渐势起,主流浏览器(IE: ???)已经开始支持webp,诸多互联网企业(Facebook 和 ebay,国内的有淘宝.腾讯和美团等)都已经在不遗余力的将webp应用到 ...
- Spring面试专题之aop
1.背景 aop是编程中非常非常重要的一种思想,在spring项目中用的场景也非常广 2.面试问题 2.1.简单的面试问题 1.什么是aop,aop的作用是什么? 面向切面编程(AOP)提供另外一种角 ...
- OEL7.6安装Oracle Database 19C(VERSION 19.3.0.0)
1.eDelivery中下载Oracle Database 19C和Oel的安装介质,并安装好操作系统 2.安装Oracle环境准备工具 环境准备工具会自动完成用户和用户组的创建.系统参数配置.依赖包 ...
- es更新说明(dsl)
一.旧版elasticsearch-dsl 很多同学在python搜索引擎视频中关于看到的第十章elasticsearch使用中使用python创建mapping老师使用的以下代码,这些代码对于ela ...
- MySQL复制技术
MySQL高可用方案 投票选举机制,较复杂 MySQL本身没有提供replication failover的解决方案,自动切换需要依赖MHA脚本 可以有多台从库,从库可以做报表和备份 MySQL复制技 ...
- 单文件WebUploader做大文件的分块和断点续传
前言: WebUploader是由Baidu WebFE(FEX)团队开发的一个简单的以HTML5为主,FLASH为辅的现代文件上传组件.在现代的浏览器里面能充分发挥HTML5的优势,同时又不摒弃主流 ...
- opencv2配置window
https://opencv.org/ opencv2 opencv3 opencv4 (现在到4版本) 二值化 图像拉伸 灰度 图像腐蚀 车牌识别 配置:https://blog.csdn.n ...
- 09-赵志勇机器学习-k-means
(草稿) k-means: 1. 随机选取n个中心 2. 计算每个点到各个中心的距离 3. 距离小于阈值的归成一类. 4. 计算新类的质心,作为下一次循环的n个中心 5. 直到新类的质心和对应本次循环 ...
- mybatis框架-choose when otherwise 的使用
需求:模拟实际业务情况,传入多条件进行查询 /** * 需求:模拟实际业务,用户传入多个条件,进行用户列表信息的查询 * @param roleids * @return */ public List ...
- [Algorithm] 202. Happy Number
Write an algorithm to determine if a number is "happy". A happy number is a number defined ...