「CTS2019」珍珠

解题思路

看了好多博客才会,问题即要求有多少种方案满足数量为奇数的变量数 \(\leq n-2m\)。考虑容斥,令 \(F(k)\) 为恰好有 \(n\) 个变量数量为奇数的方案数,\(G(k)\) 为钦点了 \(k\) 种变量的选法且它们数量都是奇数,剩下的变量随便组合的方案数。

那么,

\[Ans = \sum_{i=0}^{\min(n-2m,D)} F(i)
\]

显然 \(F, G​\) 之间满足以下关系:

\[G(k) =\sum_{i=k}^D {i\choose k} F(i) \\
F(k) =\sum_{i=k}^D {i\choose k}(-1)^{i-k}G(i)
\]

第二个式子是一个经典卷积,所以只要求出 \(G\) 做多项式乘法就可以快速得到答案了。

考虑钦点的变量是有标号集合的拼接,用指数型生成函数 \(\frac{e^{x}-e^{-x}}{2}\) 的形式表示单个变量数量为奇数的选法,\(e^x\) 表示剩下变量随便选的选法,于是

\[G(k)=[x^n]{D \choose k}(\frac{e^x-e^{-x}}{2})^ke^{x(D-k)} \\
=[x^n]\frac{1}{2^k}{D \choose k}(e^x-e^{-x})^ke^{x(D-k)}
\]

二项式展开可以得到

\[G(k)=[x^n]\frac{1}{2^k}{D \choose k}\sum_{i=0}^k{k \choose i}(-1)^ie^{x(k-2i)}e^{x(D-k)} \\
=[x^n]\frac{1}{2^k}{D \choose k}\sum_{i=0}^k{k \choose i}(-1)^ie^{x(D-2i)} \\
=\frac{1}{2^k}{D \choose k}\sum_{i=0}^k{k \choose i}(-1)^i(D-2i)^n
\]

发现是一个卷积的形式,也只需要一遍多项式乘法。

code

/*program by mangoyang*/
#include <bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 1 << 19, mod = 998244353, G = 3;
int a[N], b[N], js[N], inv[N], n, m, D, ans;
namespace poly{
int rev[1<<22], len, lg;
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % mod)
if(b & 1) ans = 1ll * ans * a % mod;
return ans;
}
inline void timesinit(int lenth){
for(len = 1, lg = 0; len <= lenth; len <<= 1, lg++);
for(int i = 0; i < len; i++)
rev[i] = (rev[i>>1] >> 1) | ((i & 1) << (lg - 1));
}
inline void dft(int *a, int sgn){
for(int i = 0; i < len; i++)
if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int k = 2; k <= len; k <<= 1){
int w = Pow(G, (mod - 1) / k);
if(sgn == -1) w = Pow(w, mod - 2);
for(int i = 0; i < len; i += k){
int now = 1;
for(int j = i; j < i + (k >> 1); j++){
int x = a[j], y = 1ll * a[j+(k>>1)] * now % mod;
a[j] = x + y >= mod ? x + y - mod : x + y;
a[j+(k>>1)] = x - y < 0 ? x - y + mod : x - y;
now = 1ll * now * w % mod;
}
}
}
if(sgn == -1){
int Inv = Pow(len, mod - 2);
for(int i = 0; i < len; i++) a[i] = 1ll * a[i] * Inv % mod;
}
}
}
using poly::timesinit;
using poly::Pow;
using poly::dft;
int main(){
read(D), read(n), read(m);
js[0] = 1, inv[0] = 1;
for(int i = 1; i <= D; i++){
js[i] = 1ll * js[i-1] * i % mod;
inv[i] = Pow(js[i], mod - 2);
}
for(int i = 0; i <= D; i++){
a[i] = 1ll * inv[i] * Pow((D - 2 * i + mod) % mod, n) % mod;
if(i & 1) a[i] = mod - a[i];
b[i] = inv[i];
}
timesinit(D + D + 1);
dft(a, 1), dft(b, 1);
for(int i = 0; i < poly::len; i++)
a[i] = 1ll * a[i] * b[i] % mod;
dft(a, -1);
for(int i = D + 1; i < poly::len; i++) a[i] = 0;
for(int i = 0; i <= D; i++){
a[i] = 1ll * a[i] * Pow(Pow(2, i), mod - 2) % mod;
a[i] = 1ll * a[i] * js[D] % mod * inv[i] % mod * inv[D-i] % mod;
a[i] = 1ll * a[i] * js[i] % mod;
a[i] = 1ll * a[i] * js[i] % mod;
if(i & 1) a[i] = (mod - a[i]) % mod;
}
reverse(a, a + D + 1);
dft(a, 1);
for(int i = 0; i < poly::len; i++)
a[i] = 1ll * a[i] * b[i] % mod;
dft(a, -1);
for(int i = 0; i <= min(n - 2 * m, D); i++){
int x = 1ll * a[D-i] * inv[i] % mod;
if(i & 1) x = (mod - x) % mod;
ans = (ans + x) % mod;
}
cout << ans << endl;
return 0;
}

「CTS2019」珍珠的更多相关文章

  1. LOJ3120. 「CTS2019」珍珠 [容斥,生成函数]

    传送门 思路 非常显然,就是要统计有多少种方式使得奇数的个数不超过\(n-2m\).(考场上这个都没想到真是身败名裂了--) 考虑直接减去钦点\(n-2m+1\)个奇数之后的方案数,但显然这样会算重, ...

  2. Solution -「CTS2019」珍珠

    题目   luogu. 题解   先 % 兔.同为兔子为什么小粉兔辣么强qwq. 本文大体跟随小粉兔的题解的思路,并为像我一样多项式超 poor 的读者作了很详细的解释.如果题解界面公式出现问题,可以 ...

  3. 「CTS2019」氪金手游

    「CTS2019」氪金手游 解题思路 考场上想出了外向树的做法,居然没意识到反向边可以容斥,其实外向树会做的话这个题差不多就做完了. 令 \(dp[u][i]\) 表示单独考虑 \(u\) 节点所在子 ...

  4. Loj #3124. 「CTS2019 | CTSC2019」氪金手游

    Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...

  5. 「CTS2019 | CTSC2019」氪金手游 解题报告

    「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中 ...

  6. 「CTS2019 | CTSC2019」随机立方体 解题报告

    「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...

  7. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  8. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  9. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

随机推荐

  1. QBXT 2017GoKing problems 补完计划

    10.11 Updata : 烦死了...麻烦死了...不补了..就这些吧 20171001 上: 100 + 90 + 90 = 280 = rank 8 T1 /* T1 从最大的数开始倒着枚举 ...

  2. 洛谷P3177 树上染色

    题目 一道非常好的树形DP. 状态:\(dp[u][n]\)为u的子树选n个黑点所能得到的收益最大值. 则最终的结果就是\(dp[root][k],\)\(root\)可以为任何值,为了方便,使\(r ...

  3. vuex基础入门

    Vuex简介 vuex的安装和组成介绍 [外链图片转存失败(img-nWQUUuyh-1565273314232)(https://upload-images.jianshu.io/upload_im ...

  4. JVM内存的划分

    JVM内存的划分有五片: 1.   寄存器: 2.   本地方法区: 3.   方法区: 4.   栈内存: 5.   堆内存.

  5. mysql tan() 函数

    mysql> ); +--------------------+ | tan(pi()/) | +--------------------+ | 0.9999999999999999 | +-- ...

  6. Prometheus监控神技--自动发现配置

    一.自动发现类型 在上一篇文中留了一个坑: 监控某个statefulset服务的时候,我在service文件中定义了个EP,然后把pod的ip写死在配置文件中,这样,当pod重启后,IP地址变化,就监 ...

  7. SRS之安装与使用

    1. 安装 1.1 github 获取源码 git clone https://github.com/ossrs/srs.git 1.2 编译 1.2.1 关闭防火墙和 selinux 先关闭防火墙, ...

  8. Spring Cloud Eureka源码分析 --- client 注册流程

    Eureka Client 是一个Java 客户端,用于简化与Eureka Server的交互,客户端同时也具备一个内置的.使用轮询负载算法的负载均衡器. 在应用启动后,将会向Eureka Serve ...

  9. 解决Bootstrap标签页(Tab)插件切换echarts不显示问题

    1.参考连接:https://blog.csdn.net/qq_24313955/article/details/78363981 问题描述:在echarts跟bootstrap选项卡整合的时候,默认 ...

  10. SEO前端篇(一)页面布局

    由于工作需要,在此对seo的一些相关知识做一个总结. 首先要了解必要的基础知识,什么是SEO以及搜索引擎的工作原理.这样才能继续下面的话题. 一.SEO定义 SEO全称:Search English ...