Given a binary search tree and a node in it, find the in-order successor of that node in the BST.

The successor of a node p is the node with the smallest key greater than p.val.

Example 1:

Input: root = [2,1,3], p = 1
Output: 2
Explanation: 1's in-order successor node is 2. Note that both p and the return value is of TreeNode type.

Example 2:

Input: root = [5,3,6,2,4,null,null,1], p = 6
Output: null
Explanation: There is no in-order successor of the current node, so the answer is null.

Note:

  1. If the given node has no in-order successor in the tree, return null.
  2. It's guaranteed that the values of the tree are unique.

这道题让我们求二叉搜索树的某个节点的中序后继节点,那么根据 BST 的性质知道其中序遍历的结果是有序的,博主最先用的方法是用迭代的中序遍历方法,然后用一个 bool 型的变量b,初始化为 false,进行中序遍历,对于遍历到的节点,首先看如果此时b已经为 true,说明之前遍历到了p,那么此时返回当前节点,如果b仍为 false,看遍历到的节点和p是否相同,如果相同,此时将b赋为 true,那么下一个遍历到的节点就能返回了,参见代码如下:

解法一:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
stack<TreeNode*> s;
bool b = false;
TreeNode *t = root;
while (t || !s.empty()) {
while (t) {
s.push(t);
t = t->left;
}
t = s.top(); s.pop();
if (b) return t;
if (t == p) b = true;
t = t->right;
}
return NULL;
}
};

下面这种方法是用的中序遍历的递归写法,需要两个全局变量 pre 和 suc,分别用来记录祖先节点和后继节点,初始化将他们都赋为 NULL,然后在进行递归中序遍历时,对于遍历到的节点,首先看 pre 和p是否相同,如果相同,则 suc 赋为当前节点,然后将 pre 赋为 root,那么在遍历下一个节点时,pre 就起到记录上一个节点的作用,参见代码如下:

解法二:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
if (!p) return NULL;
inorder(root, p);
return suc;
}
void inorder(TreeNode *root, TreeNode *p) {
if (!root) return;
inorder(root->left, p);
if (pre == p) suc = root;
pre = root;
inorder(root->right, p);
}
private:
TreeNode *pre = NULL, *suc = NULL;
};

再来看一种更简单的方法,这种方法充分地利用到了 BST 的性质,首先看根节点值和p节点值的大小,如果根节点值大,说明p节点肯定在左子树中,那么此时先将 res 赋为 root,然后 root 移到其左子节点,循环的条件是 root 存在,再比较此时 root 值和p节点值的大小,如果还是 root 值大,重复上面的操作,如果p节点值,那么将 root 移到其右子节点,这样当 root 为空时,res 指向的就是p的后继节点,参见代码如下:

解法三:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
TreeNode *res = NULL;
while (root) {
if (root->val > p->val) {
res = root;
root = root->left;
} else root = root->right;
}
return res;
}
};

上面那种方法也可以写成递归形式,写法也比较简洁,但是需要把思路理清,当根节点值小于等于p节点值,说明p的后继节点一定在右子树中,所以对右子节点递归调用此函数,如果根节点值大于p节点值,那么有可能根节点就是p的后继节点,或者左子树中的某个节点是p的后继节点,所以先对左子节点递归调用此函数,如果返回空,说明根节点是后继节点,返回即可,如果不为空,则将那个节点返回,参见代码如下:

解法四:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
if (!root) return NULL;
if (root->val <= p->val) {
return inorderSuccessor(root->right, p);
} else {
TreeNode *left = inorderSuccessor(root->left, p);
return left ? left : root;
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/285

类似题目:

Binary Search Tree Iterator

Binary Tree Inorder Traversal

Inorder Successor in BST II

参考资料:

https://leetcode.com/problems/inorder-successor-in-bst/

https://leetcode.com/problems/inorder-successor-in-bst/discuss/72653/Share-my-Java-recursive-solution

https://leetcode.com/problems/inorder-successor-in-bst/discuss/72662/*Java*-5ms-short-code-with-explanations

https://leetcode.com/problems/inorder-successor-in-bst/discuss/72656/JavaPython-solution-O(h)-time-and-O(1)-space-iterative

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 285. Inorder Successor in BST 二叉搜索树中的中序后继节点的更多相关文章

  1. [LeetCode] Inorder Successor in BST 二叉搜索树中的中序后继节点

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. No ...

  2. [LeetCode] Inorder Successor in BST II 二叉搜索树中的中序后继节点之二

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. Th ...

  3. [Swift]LeetCode285. 二叉搜索树中的中序后继节点 $ Inorder Successor in BST

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. Th ...

  4. Leetcode 285. Inorder Successor in BST

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. 本题 ...

  5. [LeetCode] Kth Smallest Element in a BST 二叉搜索树中的第K小的元素

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  6. [LeetCode] 230. Kth Smallest Element in a BST 二叉搜索树中的第K小的元素

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  7. 230 Kth Smallest Element in a BST 二叉搜索树中第K小的元素

    给定一个二叉搜索树,编写一个函数kthSmallest来查找其中第k个最小的元素. 注意:你可以假设k总是有效的,1≤ k ≤二叉搜索树元素个数. 进阶:如果经常修改二叉搜索树(插入/删除操作)并且你 ...

  8. LeetCode 230 Kth Smallest Element in a BST 二叉搜索树中的第K个元素

    1.非递归解法 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * ...

  9. 530.Minimum Absolute Difference in BST 二叉搜索树中的最小差的绝对值

    [抄题]: Given a binary search tree with non-negative values, find the minimum absolute difference betw ...

随机推荐

  1. mysql id 自增实现

    1.在mysql中建表 2.使用: >insert into 表名 values(id,'www',66); 连续运行5次后结果: =============================== ...

  2. 【前端开发环境】前端使用GIT管理代码仓库需要掌握的几个必备技巧和知识点总结

    1. Git的三种状态 已提交 committed 已暂存 staged 已修改 modified 2. Git的三个区域 Git仓库 是 Git 用来保存项目的元数据和对象数据库的地方. 这是 Gi ...

  3. Python字典(Dictionary)update()方法

    原文连接:https://www.runoob.com/python/att-dictionary-update.html Python字典(dictionary)update()函数把字典dict2 ...

  4. 【转】C#各版本新增加功能

    本系列文章主要整理并介绍 C# 各版本的新增功能. C# 8.0 C#8.0 于 2019年4月 随 .NET Framework 4.8 与 Visual Studio 2019 一同发布,但是当前 ...

  5. java函数式编程的形式

    java中没有真正的函数变量: 一.所有的函数(拉姆达)表达式,都被解释为functional interface @FunctionalInterface interface GreetingSer ...

  6. ssh遇到port 22:No route to host问题的解决方法

    一 iptables 问题 1.没有安装,可以先安装 yum install iptables 2.防火墙的开启与关闭 即时生效,重启失效 service iptables start(开启) ser ...

  7. Microsoft.Practices.Unity

    // // Summary: // Register a type mapping with the container. // // Parameters: // container: // Con ...

  8. laravel npm run dev 错误 npm run dev error [npm ERR! code ELIFECYCLE]

    出现此问题是node_modules出现错误,需要执行: 1 rm -rf node_modules 2 rm package-lock.json 3 npm cache clear --force ...

  9. jquery根据下拉框选择的值显示输入框

    原理就是根据下拉框选择的值来控制显示那个输入框: html代码: 首先定义一个下拉框,$serviceTypeList就是后台传过来的所有属性, <div class="uk-form ...

  10. Linux framebuffer deferred io机制【转】

    转自:https://www.cnblogs.com/vedic/p/10722514.html 一.总体框架 deferred io机制主要用于驱动没有实现自刷新同时应用层又不想调用FBIOPAN_ ...