词嵌入 word embedding

embedding 嵌入

embedding: 嵌入, 在数学上表示一个映射f:x->y, 是将x所在的空间映射到y所在空间上去,并且在x空间中每一个x有y空间中唯一的y与其对应。 嵌入,也就是把x在y空间中找到一个位置嵌入,一个x嵌入为一个唯一的y。

word embedding 词嵌入

也就是把当前预料文本库中每一个词语都嵌入到一个向量空间当中,并且每一个词语对应唯一的词向量,也就是词向量。

所以, one-hot也是word Embedding的一种实现,word2Vec也是为了实现 word embedding而提出的一种方案。

为什么要提出 word Embedding?

本质的想法是,把语料库中的每一个词语,映射成向量空间当中的唯一向量,这个向量在空间中的方向和位置能某种程度上衡量这个词的意思、感情色彩等。所以从传统的基于统计的n-gram模型之后,提出了one-hot模型,开始走向词向量,然后发现one-hot模型属于硬分类,只有词语不同和相同的信息,丢失了词义、不通词之间的词义,于是又提出了深度学习训练出的词向量模型,之后又经过改进,有了现在比较有名的word2vec模型。
word2vec模型本身其实是包含两种算法的模型,把语料库中的词语映射到向量空间,获得词向量的一种手段。

embedding层

初学nlp知识的时候,经常听到embedding层,一直不知道是什么意思。
我理解的embedding层,是一个全连接层。 这个全连接层的参数,也就是一个矩阵。将词的one-hot编码与这个全连接层的系数矩阵相乘,得到了一个新的向量,这个向量就是词向量,这样一层全连接层被称作了embedding层,其实就是一个用于讲词映射为向量的映射矩阵。那么这样一个系数矩阵的参数,也就是embedding层这个全连接层的参数是怎么得到的,要详细学习一下word2vec模型里面的两个算法,说的直白点是在用深度学习对词做其他任务的时候,将第一层全连接层的系数保留了下来,也就是则个映射矩阵,也就是embedding层。

写在最后

具体word2vec模型是怎么样的,暂且不在这里细说。只是我再学习的过程中,绝大多数讲解中都讲wordEmbedding 和 word2vec混在一起说,也没说清楚什么是word embedding,看到有前辈讲的很清楚,我将自己的理解记录下来,以供他人参考。当然,我的理解可能是不对的,欢迎批评指正

词向量 词嵌入 word embedding的更多相关文章

  1. 词袋模型(BOW,bag of words)和词向量模型(Word Embedding)概念介绍

    例句: Jane wants to go to Shenzhen. Bob  wants to go to Shanghai. 一.词袋模型 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个 ...

  2. [DeeplearningAI笔记]序列模型2.1-2.2词嵌入word embedding

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇 ...

  3. DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec

    DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...

  4. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  5. 词向量(one-hot/SVD/NNLM/Word2Vec/GloVe)

    目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基 ...

  6. NLP教程(2) | GloVe及词向量的训练与评估

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...

  7. 词向量模型word2vector详解

    目录 前言 1.背景知识 1.1.词向量 1.2.one-hot模型 1.3.word2vec模型 1.3.1.单个单词到单个单词的例子 1.3.2.单个单词到单个单词的推导 2.CBOW模型 3.s ...

  8. DNN模型训练词向量原理

    转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处 ...

  9. NLP直播-1 词向量与ELMo模型

    翻车2次,试水2次,今天在B站终于成功直播了. 人气11万. 主要讲了语言模型.词向量的训练.ELMo模型(深度.双向的LSTM模型) 预训练与词向量 词向量的常见训练方法 深度学习与层次表示 LST ...

随机推荐

  1. virt-install创建虚拟机并制作成模板

    一.使用virt-install创建新的虚拟机 virt--template --ram --vcpu= --virt-type kvm --cdrom=/Data/kvm/iso/CentOS-.i ...

  2. Ansible 常用模块(一)

    一.Ansible简介 Ansible是新出现的自动化运维工具,基于python开发,集合了众多运维工具(puppet(ruby).cfengine.chef.func.fabric.)的优点,实现了 ...

  3. 离线安装python的ibm_db模块

    目前手头的项目是一个UI自动化框架,其中有些模块的功能需要与DB2数据库交互,于是百度了一下python操作DB2的模块是 ibm_db. 然而我的工作机器是一台windows堡垒机,不能联网,固不能 ...

  4. GitHub使用方法与三步教程

    git下载地址:https://git-scm.com/downloads 下一步下一步就好了 在cmd输入 git --version 在桌面空白右键 Git Bash Here命令行 输入 git ...

  5. utf8mb4版本设置django

    'OPTIONS':{ 'init_command':"SET sql_mode='STRICT_TRANS_TABLES'", 'charset':'utf8mb4',

  6. 洛谷P5092 [USACO2004OPEN]Cube Stacking 方块游戏 (带权并查集)

    题目描述 约翰和贝茜在玩一个方块游戏.编号为 1\ldots n 1-n 的 n n ( 1 \leq n \leq 30000 1≤n≤30000 )个方块正放在地上,每个构成一个立方柱. 游戏开始 ...

  7. new.target元属性 | 分别用es5、es6 判断一个函数是否使用new操作符

    函数内部有两个方法 [[call]] 和 [[construct]] (箭头函数没有这个方法),当使用new 操作符时, 函数内部调用 [[construct]], 创建一个新实例,this指向这个实 ...

  8. Servlet 容器

    Servlet容器主要是JavaWeb应用提供运行时环境,所以也可以称之为JavaWeb应用容器,或者Servlet/JSP容器.Servlet容器主要负责管理Servlet.JSP的生命周期以及它们 ...

  9. Numpy | 05 创建数组

    ndarray 数组除了可以使用底层 ndarray 构造器来创建外,也可以通过以下几种方式来创建. 一.numpy.empty numpy.empty 方法用来创建一个指定形状(shape).数据类 ...

  10. jq 轮播图 转载-周菜菜

    <style> li{list-style-type:none ; display:inline; width:90px; height:160px; float:left; } .pic ...