原题传送门

题意:给你一个长度为\(n\)的序列\(A\),每次询问修改一个元素(只对当前询问有效),然后让你找到一个不下降序列\(B\),使得这两个序列相应位置之差的平方和最小,并输出这个最小平方和

观察样例说明,发现一个很有趣的性质,\(B\)中数字相同的一段的数字正好是\(A\)中这段数字的平均数

那我们就珂以猜想:最优解的形式一定为分成若干段,每一段的\(B_i\)即取其中\(A_i\)的平均数,同时保证\(B\)的有序性(这篇论文好像有证明)

如何求出最优的\(B\)?我们珂以使用单调栈

考虑枚举\(i\),将\([i,i]\)塞进单调栈中,然后比较栈顶区间的平均值和栈顶下面一个区间的平均值。如果栈顶区间平均值较小,则不满足不下降性质,因此我们将这两个区间合并,然后继续与再下面一个区间进行比较……

如何合并答案?我们只需要维护维护区间元素个数,区间元素和,区间元素平方和即可(像方差那题一样)

接下来考虑如何修改。我们在求整个序列的最优解时,同主席树维护\(A\)每个前缀的单调栈\(pre\)。类似的,从后向前也跑一次,用主席树维护\(A\)每个后缀的单调栈\(suf\)。

假设我们将位置\(pos\)的值修改成了\(val\)。设修改后最优解中\(pos\)所在的区间为\([L,R]\),如果我们能够快速求出\(L,R\)我们就珂以快速得出答案。

注意到单调栈中的一段数的任何前缀平均值都大于去掉该前缀剩余的数的平均值,所以\(L\)为\(pre[pos-1]\)中某个区间的\(L\)或\(pos\),\(R\)为\(suf[pos+1]\)中某个区间的\(R\)或\(pos\)

二分\(R\)的位置,在主席树\(pre[pos-1]\)上二分求出符合的\(L\),判断是否合法。最终找到最小的合法的\(R\),算出\(L\),就珂以求出答案了

#include <bits/stdc++.h>
#define N 100005
#define ll long long
#define mod 998244353
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Max(register int a,register int b)
{
return a>b?a:b;
}
int n,m,pre[N],prelen[N],suf[N],suflen[N],tot;
pair<int,int> s[N];
ll inv[N];
struct node{
ll x,y,z;
node(){x=y=z=0;}
node(register ll _x,register ll _y,register ll _z){x=_x,y=_y,z=_z;}
inline ll cal()
{
return (z+mod-(y%mod)*(y%mod)%mod*inv[x]%mod)%mod;
}
}sum[N];
inline node Init(register ll v)
{
return node(1,v,v*v%mod);
}
inline node operator + (node a,node b){return (node){a.x+b.x,a.y+b.y,(a.z+b.z)%mod};}
inline node operator - (node a,node b){return (node){a.x-b.x,a.y-b.y,(a.z-b.z+mod)%mod};}
inline bool operator < (node a,node b){
if(!a.x)
return b.x;
if(!b.x)
return 0;
return (double)a.y/a.x<(double)b.y/b.x;
}
inline node cal(register int l,register int r)
{
if(!l&&!r)
return node(0,0,0);
return sum[r]-sum[l-1];
}
struct seg{
int ls,rs,L,R,ans,Rp;
inline void merge(register seg a,register seg b)
{
L=a.L;
R=Max(a.R,b.R);
ans=(a.ans+b.ans)%mod;
Rp=a.Rp;
}
}tr[N*80];
inline void modify(register int &x,register int l,register int r,register int pos,register int L,register int R)
{
tr[++tot]=tr[x];
x=tot;
if(l==r)
tr[x]=(seg){0,0,L,R,cal(L,R).cal(),R};
else
{
int mid=l+r>>1;
if(pos<=mid)
modify(tr[x].ls,l,mid,pos,L,R);
else
modify(tr[x].rs,mid+1,r,pos,L,R);
tr[x].merge(tr[tr[x].ls],tr[tr[x].rs]);
}
}
inline int query_suf(register int x,register int l,register int r,register int pos)
{
if(l==r)
return tr[x].R;
int mid=l+r>>1;
if(pos<=mid)
return query_suf(tr[x].ls,l,mid,pos);
else
return query_suf(tr[x].rs,mid+1,r,pos);
}
inline int query_pre(register int x,register int l,register int r,register int pos,register node &val)
{
if(r<=pos)
{
node twh=cal(tr[x].L,tr[x].R),tlf=cal(tr[x].L,tr[x].Rp);
if(!(tlf<val+twh))
{
val=val+twh;
return 0;
}
if(l==r)
return tr[x].R;
}
int mid=l+r>>1,res=0;
if(pos>mid)
res=query_pre(tr[x].rs,mid+1,r,pos,val);
if(res)
return res;
return query_pre(tr[x].ls,l,mid,pos,val);
}
int main()
{
n=read(),m=read();
inv[1]=1;
for(register int i=2;i<=n;++i)
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
for(register int i=1;i<=n;++i)
sum[i]=sum[i-1]+Init(read());
for(register int i=1,top=0;i<=n;++i)
{
pre[i]=pre[i-1];
int l=i;
while(top&&!(cal(s[top].first,s[top].second)<cal(l,i)))
modify(pre[i],1,n,top,0,0),l=s[top--].first;
s[prelen[i]=++top]=make_pair(l,i);
modify(pre[i],1,n,top,l,i);
}
for(register int i=n,top=0;i;--i)
{
suf[i]=suf[i+1];
int r=i;
while(top&&!(cal(i,r)<cal(s[top].first,s[top].second)))
modify(suf[i],1,n,top,0,0),r=s[top--].second;
s[suflen[i]=++top]=make_pair(i,r);
modify(suf[i],1,n,top,i,r);
}
write(tr[pre[n]].ans),puts("");
while(m--)
{
int x=read(),y=read();
int l=0,r=suflen[x+1]-1,res=r+1;
while(l<=r)
{
int mid=l+r>>1;
int rp=mid?query_suf(suf[x+1],1,n,suflen[x+1]-mid+1):x;
node val=Init(y)+cal(x+1,rp);
int lp=x>1?query_pre(pre[x-1],1,n,prelen[x-1],val):1;
if(val<cal(rp+1,query_suf(suf[x+1],1,n,suflen[x+1]-mid)))
res=mid,r=mid-1;
else
l=mid+1;
}
int rp=res?query_suf(suf[x+1],1,n,suflen[x+1]-res+1):x;
node val=Init(y)+cal(x+1,rp);
int lp=x>1?query_pre(pre[x-1],1,n,prelen[x-1],val):1;
write((val.cal()+tr[pre[lp]].ans+tr[suf[rp+1]].ans)%mod),puts("");
}
return 0;
}

【题解】Luogu P5294 [HNOI2019]序列的更多相关文章

  1. luogu P5294 [HNOI2019]序列

    传送门 这个什么鬼证明直接看uoj的题解吧根本不会证明 首先方案一定是若干段等值的\(B\),然后对于一段,\(B\)的值应该是\(A\)的平均值.这个最优方案是可以线性构造的,也就是维护以区间平均值 ...

  2. [luogu P3648] [APIO2014]序列分割

    [luogu P3648] [APIO2014]序列分割 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序 ...

  3. [题解] Luogu P5446 [THUPC2018]绿绿和串串

    [题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...

  4. 【题解】Luogu P2572 [SCOI2010]序列操作

    原题传送门:P2572 [SCOI2010]序列操作 这题好弱智啊 裸的珂朵莉树 前置芝士:珂朵莉树 窝博客里对珂朵莉树的介绍 没什么好说的自己看看吧 操作1:把区间内所有数推平成0,珂朵莉树基本操作 ...

  5. 【题解】Luogu P5470 [NOI2019]序列

    原题传送门 同步赛上我一开始想了个看似正确却漏洞百出的贪心:按\(a_i+b_i\)的和从大向小贪心 随便想想发现是假的,然后就写了个28pts的暴力dp 杜神后半程说这题就是个贪心,但我没时间写了 ...

  6. 题解 [HNOI2019]序列

    题目传送门 题目大意 给出一个\(n\)个数的数列\(A_{1,2,...,n}\),求出一个单调不减的数列\(B_{1,2,...,n}\),使得\(\sum_{i=1}^{n}(A_i-B_i)^ ...

  7. 【题解】Luogu P5288 [HNOI2019]多边形

    原题传送门 HN的题目就是毒瘤 我们有以下猜想: 1.最后所有的线都连到了n号点上 2.最小步数应该为n-3-已经连到n号点的线段数量 本来有些边\((a_i,n)\)会将整个图分割成很多个区间.对于 ...

  8. 洛谷 题解 UVA1626 【括号序列 Brackets sequence】

    看还没有人发记搜的题解,赶紧来水发一篇 我们定义dp[i][j]为区间i~j内最少添加几个括号才能把这个串变成正规括号序列. 考虑四种情况 i>j不存在这种子串,返回0 i==j子串长度为1无论 ...

  9. 题解 最长上升序列2 — LIS2

    最长上升序列2 - LIS2 Description 已知一个 1 ∼ N 的排列的最长上升子序列长度为 K ,求合法的排列个数. Input 输入一行二个整数 N , K ( K ≤ N ≤ 15) ...

随机推荐

  1. VUE的生命周期——钩子函数

  2. 【BigData】Java基础_冒泡排序

    1.实现需求 根据已经存在的数组,使用冒泡排序将数组中的元素排序后输出. 2.代码 package cn.test.logan.day02; /** * 冒泡排序在数组上的实现 * @author Q ...

  3. mybatis之批量查询

    关于MyBatis批量更新和添加,参考我的如下文章即可:MyBatis的批量更新实例 MyBatis的批量添加实例 另外不管是批量的新增.删除.修改.查询也好,还是单个新增.删除.修改查询也罢.都会用 ...

  4. 记一次netty http server给客户端返回reset包排除

    类似文章:解决用netty去做web服务时,post长度过大的问题 现象:当客户端给server发送的请求体较大时,服务直接给客户端返回reset包. tcpdump: 应用还没有完全收上去,就clo ...

  5. Db2 Terminate Vs Connect Reset , Disconnect

    db2 Terminate and db2 connect Reset both break the connection to a database.                Connect ...

  6. Ubuntu 16.04.4 LTS下安装OpenSSL

    1.下载openssl,本次下载的版本是openssl-1.1.0l.tar.gz : 地址  https://www.openssl.org/source/openssl-1.1.0l.tar.gz ...

  7. axios 设置headers token

    axios({ method:"put", url:"....", data:{"action":"refreshToken&qu ...

  8. 关于怎么提取m3u8地址

    摘自: https://blog.51cto.com/4373601/1920758 很长时间没有写博客了,这一段时间比较忙,接下来的日子要坚持写博客了,后期抽空会把这一年多的测试心得补上来,写博客其 ...

  9. 内存自动清理.sql

    --清除存储过程缓存 DBCC FREEPROCCACHE --注:方便记住关键字 FREEPROCCACHE可以拆解成 FREE(割舍,清除) PROC(存储过程关键字简写),CACHE(缓存) - ...

  10. SAP翔子_ABAP_DEMO篇索引

    序号 描述 SAP翔子_ABAP_DEMO篇1 ABAP DEMO篇1 单层反查BOM SAP翔子_ABAP_DEMO篇2 ABAP DEMO篇2 删除工艺路线 SAP翔子_ABAP_DEMO篇3 A ...