1.Gaussian Kernel

  1. function sim = gaussianKernel(x1, x2, sigma)
  2. %RBFKERNEL returns a radial basis function kernel between x1 and x2
  3. % sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
  4. % and returns the value in sim
  5.  
  6. % Ensure that x1 and x2 are column vectors
  7. x1 = x1(:); x2 = x2(:);
  8.  
  9. % You need to return the following variables correctly.
  10. sim = 0;
  11.  
  12. % ====================== YOUR CODE HERE ======================
  13. % Instructions: Fill in this function to return the similarity between x1
  14. % and x2 computed using a Gaussian kernel with bandwidth
  15. % sigma
  16. %
  17. %
  18.  
  19. m=length(x1)
  20. sum=0
  21. for i=1:m,
  22. sum=sum-((x1(i)-x2(i))^2)
  23. endfor
  24.  
  25. sim=exp(sum/(2*sigma^2))
  26.  
  27. % =============================================================
  28.  
  29. end

  

2.Example Dataset 3

  1. function [C, sigma] = dataset3Params(X, y, Xval, yval)
  2. %DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
  3. %where you select the optimal (C, sigma) learning parameters to use for SVM
  4. %with RBF kernel
  5. % [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
  6. % sigma. You should complete this function to return the optimal C and
  7. % sigma based on a cross-validation set.
  8. %
  9.  
  10. % You need to return the following variables correctly.
  11. C = 1;
  12. sigma = 0.3;
  13.  
  14. % ====================== YOUR CODE HERE ======================
  15. % Instructions: Fill in this function to return the optimal C and sigma
  16. % learning parameters found using the cross validation set.
  17. % You can use svmPredict to predict the labels on the cross
  18. % validation set. For example,
  19. % predictions = svmPredict(model, Xval);
  20. % will return the predictions on the cross validation set.
  21. %
  22. % Note: You can compute the prediction error using
  23. % mean(double(predictions ~= yval))
  24. %
  25. steps=[0.01,0.03,0.1,0.3,1,3,10,30];
  26. minerror=Inf;
  27. minC=Inf;
  28. minsigma=Inf;
  29.  
  30. for i=1:length(steps),
  31. for j=1:length(steps),
  32. curc=steps(i);
  33. cursigma=steps(j);
  34. model=svmTrain(X,y,curc,@(x1,x2)gaussianKernel(x1,x2,cursigma));
  35. predictions=svmPredict(model,Xval);
  36. error=mean(double(predictions~=yval));
  37. if(error<minerror)
  38. minerror=error;
  39. minC=curc;
  40. minsigma=cursigma;
  41. end
  42. endfor
  43. endfor
  44.  
  45. C=minC;
  46. sigma=minsigma;
  47.  
  48. % =========================================================================
  49.  
  50. end

  

3.Vocabulary List

  1. function word_indices = processEmail(email_contents)
  2. %PROCESSEMAIL preprocesses a the body of an email and
  3. %returns a list of word_indices
  4. % word_indices = PROCESSEMAIL(email_contents) preprocesses
  5. % the body of an email and returns a list of indices of the
  6. % words contained in the email.
  7. %
  8.  
  9. % Load Vocabulary
  10. vocabList = getVocabList();
  11.  
  12. % Init return value
  13. word_indices = [];
  14.  
  15. % ========================== Preprocess Email ===========================
  16.  
  17. % Find the Headers ( \n\n and remove )
  18. % Uncomment the following lines if you are working with raw emails with the
  19. % full headers
  20.  
  21. % hdrstart = strfind(email_contents, ([char(10) char(10)]));
  22. % email_contents = email_contents(hdrstart(1):end);
  23.  
  24. % Lower case
  25. email_contents = lower(email_contents);
  26.  
  27. % Strip all HTML
  28. % Looks for any expression that starts with < and ends with > and replace
  29. % and does not have any < or > in the tag it with a space
  30. email_contents = regexprep(email_contents, '<[^<>]+>', ' ');
  31.  
  32. % Handle Numbers
  33. % Look for one or more characters between 0-9
  34. email_contents = regexprep(email_contents, '[0-9]+', 'number');
  35.  
  36. % Handle URLS
  37. % Look for strings starting with http:// or https://
  38. email_contents = regexprep(email_contents, ...
  39. '(http|https)://[^\s]*', 'httpaddr');
  40.  
  41. % Handle Email Addresses
  42. % Look for strings with @ in the middle
  43. email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr');
  44.  
  45. % Handle $ sign
  46. email_contents = regexprep(email_contents, '[$]+', 'dollar');
  47.  
  48. % ========================== Tokenize Email ===========================
  49.  
  50. % Output the email to screen as well
  51. fprintf('\n==== Processed Email ====\n\n');
  52.  
  53. % Process file
  54. l = 0;
  55.  
  56. while ~isempty(email_contents)
  57.  
  58. % Tokenize and also get rid of any punctuation
  59. [str, email_contents] = ...
  60. strtok(email_contents, ...
  61. [' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
  62.  
  63. % Remove any non alphanumeric characters
  64. str = regexprep(str, '[^a-zA-Z0-9]', '');
  65.  
  66. % Stem the word
  67. % (the porterStemmer sometimes has issues, so we use a try catch block)
  68. try str = porterStemmer(strtrim(str));
  69. catch str = ''; continue;
  70. end;
  71.  
  72. % Skip the word if it is too short
  73. if length(str) < 1
  74. continue;
  75. end
  76.  
  77. % Look up the word in the dictionary and add to word_indices if
  78. % found
  79. % ====================== YOUR CODE HERE ======================
  80. % Instructions: Fill in this function to add the index of str to
  81. % word_indices if it is in the vocabulary. At this point
  82. % of the code, you have a stemmed word from the email in
  83. % the variable str. You should look up str in the
  84. % vocabulary list (vocabList). If a match exists, you
  85. % should add the index of the word to the word_indices
  86. % vector. Concretely, if str = 'action', then you should
  87. % look up the vocabulary list to find where in vocabList
  88. % 'action' appears. For example, if vocabList{18} =
  89. % 'action', then, you should add 18 to the word_indices
  90. % vector (e.g., word_indices = [word_indices ; 18]; ).
  91. %
  92. % Note: vocabList{idx} returns a the word with index idx in the
  93. % vocabulary list.
  94. %
  95. % Note: You can use strcmp(str1, str2) to compare two strings (str1 and
  96. % str2). It will return 1 only if the two strings are equivalent.
  97. %
  98.  
  99. for idx=1:length(vocabList),
  100. if(strcmp(vocabList{idx},str)==1)
  101. word_indices=[word_indices;idx];
  102. end
  103. endfor
  104.  
  105. % =============================================================
  106.  
  107. % Print to screen, ensuring that the output lines are not too long
  108. if (l + length(str) + 1) > 78
  109. fprintf('\n');
  110. l = 0;
  111. end
  112. fprintf('%s ', str);
  113. l = l + length(str) + 1;
  114.  
  115. end
  116.  
  117. % Print footer
  118. fprintf('\n\n=========================\n');
  119.  
  120. end

  

4.emailFeatures

  1. function x = emailFeatures(word_indices)
  2. %EMAILFEATURES takes in a word_indices vector and produces a feature vector
  3. %from the word indices
  4. % x = EMAILFEATURES(word_indices) takes in a word_indices vector and
  5. % produces a feature vector from the word indices.
  6.  
  7. % Total number of words in the dictionary
  8. n = 1899;
  9.  
  10. % You need to return the following variables correctly.
  11. x = zeros(n, 1);
  12.  
  13. % ====================== YOUR CODE HERE ======================
  14. % Instructions: Fill in this function to return a feature vector for the
  15. % given email (word_indices). To help make it easier to
  16. % process the emails, we have have already pre-processed each
  17. % email and converted each word in the email into an index in
  18. % a fixed dictionary (of 1899 words). The variable
  19. % word_indices contains the list of indices of the words
  20. % which occur in one email.
  21. %
  22. % Concretely, if an email has the text:
  23. %
  24. % The quick brown fox jumped over the lazy dog.
  25. %
  26. % Then, the word_indices vector for this text might look
  27. % like:
  28. %
  29. % 60 100 33 44 10 53 60 58 5
  30. %
  31. % where, we have mapped each word onto a number, for example:
  32. %
  33. % the -- 60
  34. % quick -- 100
  35. % ...
  36. %
  37. % (note: the above numbers are just an example and are not the
  38. % actual mappings).
  39. %
  40. % Your task is take one such word_indices vector and construct
  41. % a binary feature vector that indicates whether a particular
  42. % word occurs in the email. That is, x(i) = 1 when word i
  43. % is present in the email. Concretely, if the word 'the' (say,
  44. % index 60) appears in the email, then x(60) = 1. The feature
  45. % vector should look like:
  46. %
  47. % x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
  48. %
  49. %
  50.  
  51. for i=1:length(word_indices),
  52. x(word_indices(i))=1;
  53. endfor
  54.  
  55. % =========================================================================
  56.  
  57. end

  

Machine learning 第7周编程作业 SVM的更多相关文章

  1. Machine learning第6周编程作业

    1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC ...

  2. Machine learning 第8周编程作业 K-means and PCA

    1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...

  3. Machine learning 第5周编程作业

    1.Sigmoid Gradient function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigm ...

  4. Machine learning第四周code 编程作业

    1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...

  5. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  6. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  7. c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业

    做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...

  8. Machine Learning - 第7周(Support Vector Machines)

    SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...

  9. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

随机推荐

  1. java高级工程师(一)

    一.无笔试题   不知道是不是职位原因还是没遇到,面试时,都不需要做笔试题,而是填张个人信息表格,或者直接面试     二.三大框架方面问题   1.Spring 事务的隔离性,并说说每个隔离性的区别 ...

  2. python动态捕获异常-乾颐堂

    在讨论动态捕获异常时让我大吃一惊的是,可以让我找到隐藏的Bug和乐趣... 有问题的代码 下面的代码来自一个产品中看起来是好的抽象代码 - slightly(!) .这是调用一些统计数据的函数,然后进 ...

  3. centos7 安装mongo

    1:创建仓库 vi /etc/yum.repos.d/mongodb-org-3.4.repo 2:把下面的内容复制到文件中 保存退出 [mongodb-org-3.4] name=MongoDB R ...

  4. java类的泛型DAO

    @Transactional public abstract class DAOSupport<T> implements DAO<T> { protected Class&l ...

  5. lnmp 一键安装包 nginx配置tp5 phpinfo模式 隐藏index.php

    tp5 url 线上访问 在nginx 上 出现404错误 那是因为pathinfo没有被支持 修改如下:找到   /usr/local/nginx/config/vhost/项目名.config s ...

  6. 用WORD2007发布博客文章

    目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...

  7. html 中的<script>标签

    https://www.w3.org/TR/html51/semantics-scripting.html#the-script-element 一. <script type='text/ja ...

  8. .NET基础 (17)反射

    反射1 请解释反射的基本原理和其实现的基石2 .NET提供了哪些类型来实现反射3 如何实现动态地发射程序集4 如何利用反射来实现工厂模式 反射1 请解释反射的基本原理和其实现的基石 反射是一种动态分析 ...

  9. URAL1991 The battle near the swamp 2017-04-12 18:07 92人阅读 评论(0) 收藏

    The battle near the swamp Gungan: Jar Jar, usen da booma!  Jar Jar: What? Mesa no have a booma!  Gun ...

  10. 大数据项目中js中代码和java中代码(解决Tomcat打印日志中文乱码)

    Idea2018中集成Tomcat9导致OutPut乱码找到tomcat的安装目录,打开logging.properties文件,增加一行代码,覆盖默认设置,将日志编码格式修改为GBK.java.ut ...