Machine learning 第7周编程作业 SVM
1.Gaussian Kernel
- function sim = gaussianKernel(x1, x2, sigma)
- %RBFKERNEL returns a radial basis function kernel between x1 and x2
- % sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
- % and returns the value in sim
- % Ensure that x1 and x2 are column vectors
- x1 = x1(:); x2 = x2(:);
- % You need to return the following variables correctly.
- sim = 0;
- % ====================== YOUR CODE HERE ======================
- % Instructions: Fill in this function to return the similarity between x1
- % and x2 computed using a Gaussian kernel with bandwidth
- % sigma
- %
- %
- m=length(x1)
- sum=0
- for i=1:m,
- sum=sum-((x1(i)-x2(i))^2)
- endfor
- sim=exp(sum/(2*sigma^2))
- % =============================================================
- end
2.Example Dataset 3
- function [C, sigma] = dataset3Params(X, y, Xval, yval)
- %DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
- %where you select the optimal (C, sigma) learning parameters to use for SVM
- %with RBF kernel
- % [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
- % sigma. You should complete this function to return the optimal C and
- % sigma based on a cross-validation set.
- %
- % You need to return the following variables correctly.
- C = 1;
- sigma = 0.3;
- % ====================== YOUR CODE HERE ======================
- % Instructions: Fill in this function to return the optimal C and sigma
- % learning parameters found using the cross validation set.
- % You can use svmPredict to predict the labels on the cross
- % validation set. For example,
- % predictions = svmPredict(model, Xval);
- % will return the predictions on the cross validation set.
- %
- % Note: You can compute the prediction error using
- % mean(double(predictions ~= yval))
- %
- steps=[0.01,0.03,0.1,0.3,1,3,10,30];
- minerror=Inf;
- minC=Inf;
- minsigma=Inf;
- for i=1:length(steps),
- for j=1:length(steps),
- curc=steps(i);
- cursigma=steps(j);
- model=svmTrain(X,y,curc,@(x1,x2)gaussianKernel(x1,x2,cursigma));
- predictions=svmPredict(model,Xval);
- error=mean(double(predictions~=yval));
- if(error<minerror)
- minerror=error;
- minC=curc;
- minsigma=cursigma;
- end
- endfor
- endfor
- C=minC;
- sigma=minsigma;
- % =========================================================================
- end
3.Vocabulary List
- function word_indices = processEmail(email_contents)
- %PROCESSEMAIL preprocesses a the body of an email and
- %returns a list of word_indices
- % word_indices = PROCESSEMAIL(email_contents) preprocesses
- % the body of an email and returns a list of indices of the
- % words contained in the email.
- %
- % Load Vocabulary
- vocabList = getVocabList();
- % Init return value
- word_indices = [];
- % ========================== Preprocess Email ===========================
- % Find the Headers ( \n\n and remove )
- % Uncomment the following lines if you are working with raw emails with the
- % full headers
- % hdrstart = strfind(email_contents, ([char(10) char(10)]));
- % email_contents = email_contents(hdrstart(1):end);
- % Lower case
- email_contents = lower(email_contents);
- % Strip all HTML
- % Looks for any expression that starts with < and ends with > and replace
- % and does not have any < or > in the tag it with a space
- email_contents = regexprep(email_contents, '<[^<>]+>', ' ');
- % Handle Numbers
- % Look for one or more characters between 0-9
- email_contents = regexprep(email_contents, '[0-9]+', 'number');
- % Handle URLS
- % Look for strings starting with http:// or https://
- email_contents = regexprep(email_contents, ...
- '(http|https)://[^\s]*', 'httpaddr');
- % Handle Email Addresses
- % Look for strings with @ in the middle
- email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr');
- % Handle $ sign
- email_contents = regexprep(email_contents, '[$]+', 'dollar');
- % ========================== Tokenize Email ===========================
- % Output the email to screen as well
- fprintf('\n==== Processed Email ====\n\n');
- % Process file
- l = 0;
- while ~isempty(email_contents)
- % Tokenize and also get rid of any punctuation
- [str, email_contents] = ...
- strtok(email_contents, ...
- [' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
- % Remove any non alphanumeric characters
- str = regexprep(str, '[^a-zA-Z0-9]', '');
- % Stem the word
- % (the porterStemmer sometimes has issues, so we use a try catch block)
- try str = porterStemmer(strtrim(str));
- catch str = ''; continue;
- end;
- % Skip the word if it is too short
- if length(str) < 1
- continue;
- end
- % Look up the word in the dictionary and add to word_indices if
- % found
- % ====================== YOUR CODE HERE ======================
- % Instructions: Fill in this function to add the index of str to
- % word_indices if it is in the vocabulary. At this point
- % of the code, you have a stemmed word from the email in
- % the variable str. You should look up str in the
- % vocabulary list (vocabList). If a match exists, you
- % should add the index of the word to the word_indices
- % vector. Concretely, if str = 'action', then you should
- % look up the vocabulary list to find where in vocabList
- % 'action' appears. For example, if vocabList{18} =
- % 'action', then, you should add 18 to the word_indices
- % vector (e.g., word_indices = [word_indices ; 18]; ).
- %
- % Note: vocabList{idx} returns a the word with index idx in the
- % vocabulary list.
- %
- % Note: You can use strcmp(str1, str2) to compare two strings (str1 and
- % str2). It will return 1 only if the two strings are equivalent.
- %
- for idx=1:length(vocabList),
- if(strcmp(vocabList{idx},str)==1)
- word_indices=[word_indices;idx];
- end
- endfor
- % =============================================================
- % Print to screen, ensuring that the output lines are not too long
- if (l + length(str) + 1) > 78
- fprintf('\n');
- l = 0;
- end
- fprintf('%s ', str);
- l = l + length(str) + 1;
- end
- % Print footer
- fprintf('\n\n=========================\n');
- end
4.emailFeatures
- function x = emailFeatures(word_indices)
- %EMAILFEATURES takes in a word_indices vector and produces a feature vector
- %from the word indices
- % x = EMAILFEATURES(word_indices) takes in a word_indices vector and
- % produces a feature vector from the word indices.
- % Total number of words in the dictionary
- n = 1899;
- % You need to return the following variables correctly.
- x = zeros(n, 1);
- % ====================== YOUR CODE HERE ======================
- % Instructions: Fill in this function to return a feature vector for the
- % given email (word_indices). To help make it easier to
- % process the emails, we have have already pre-processed each
- % email and converted each word in the email into an index in
- % a fixed dictionary (of 1899 words). The variable
- % word_indices contains the list of indices of the words
- % which occur in one email.
- %
- % Concretely, if an email has the text:
- %
- % The quick brown fox jumped over the lazy dog.
- %
- % Then, the word_indices vector for this text might look
- % like:
- %
- % 60 100 33 44 10 53 60 58 5
- %
- % where, we have mapped each word onto a number, for example:
- %
- % the -- 60
- % quick -- 100
- % ...
- %
- % (note: the above numbers are just an example and are not the
- % actual mappings).
- %
- % Your task is take one such word_indices vector and construct
- % a binary feature vector that indicates whether a particular
- % word occurs in the email. That is, x(i) = 1 when word i
- % is present in the email. Concretely, if the word 'the' (say,
- % index 60) appears in the email, then x(60) = 1. The feature
- % vector should look like:
- %
- % x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
- %
- %
- for i=1:length(word_indices),
- x(word_indices(i))=1;
- endfor
- % =========================================================================
- end
Machine learning 第7周编程作业 SVM的更多相关文章
- Machine learning第6周编程作业
1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC ...
- Machine learning 第8周编程作业 K-means and PCA
1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...
- Machine learning 第5周编程作业
1.Sigmoid Gradient function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigm ...
- Machine learning第四周code 编程作业
1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业
做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
- Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)
In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...
随机推荐
- java高级工程师(一)
一.无笔试题 不知道是不是职位原因还是没遇到,面试时,都不需要做笔试题,而是填张个人信息表格,或者直接面试 二.三大框架方面问题 1.Spring 事务的隔离性,并说说每个隔离性的区别 ...
- python动态捕获异常-乾颐堂
在讨论动态捕获异常时让我大吃一惊的是,可以让我找到隐藏的Bug和乐趣... 有问题的代码 下面的代码来自一个产品中看起来是好的抽象代码 - slightly(!) .这是调用一些统计数据的函数,然后进 ...
- centos7 安装mongo
1:创建仓库 vi /etc/yum.repos.d/mongodb-org-3.4.repo 2:把下面的内容复制到文件中 保存退出 [mongodb-org-3.4] name=MongoDB R ...
- java类的泛型DAO
@Transactional public abstract class DAOSupport<T> implements DAO<T> { protected Class&l ...
- lnmp 一键安装包 nginx配置tp5 phpinfo模式 隐藏index.php
tp5 url 线上访问 在nginx 上 出现404错误 那是因为pathinfo没有被支持 修改如下:找到 /usr/local/nginx/config/vhost/项目名.config s ...
- 用WORD2007发布博客文章
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- html 中的<script>标签
https://www.w3.org/TR/html51/semantics-scripting.html#the-script-element 一. <script type='text/ja ...
- .NET基础 (17)反射
反射1 请解释反射的基本原理和其实现的基石2 .NET提供了哪些类型来实现反射3 如何实现动态地发射程序集4 如何利用反射来实现工厂模式 反射1 请解释反射的基本原理和其实现的基石 反射是一种动态分析 ...
- URAL1991 The battle near the swamp 2017-04-12 18:07 92人阅读 评论(0) 收藏
The battle near the swamp Gungan: Jar Jar, usen da booma! Jar Jar: What? Mesa no have a booma! Gun ...
- 大数据项目中js中代码和java中代码(解决Tomcat打印日志中文乱码)
Idea2018中集成Tomcat9导致OutPut乱码找到tomcat的安装目录,打开logging.properties文件,增加一行代码,覆盖默认设置,将日志编码格式修改为GBK.java.ut ...