Machine learning 第7周编程作业 SVM
1.Gaussian Kernel
function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
% and returns the value in sim % Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:); % You need to return the following variables correctly.
sim = 0; % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
% and x2 computed using a Gaussian kernel with bandwidth
% sigma
%
% m=length(x1)
sum=0
for i=1:m,
sum=sum-((x1(i)-x2(i))^2)
endfor sim=exp(sum/(2*sigma^2)) % ============================================================= end
2.Example Dataset 3
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
% % You need to return the following variables correctly.
C = 1;
sigma = 0.3; % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
steps=[0.01,0.03,0.1,0.3,1,3,10,30];
minerror=Inf;
minC=Inf;
minsigma=Inf; for i=1:length(steps),
for j=1:length(steps),
curc=steps(i);
cursigma=steps(j);
model=svmTrain(X,y,curc,@(x1,x2)gaussianKernel(x1,x2,cursigma));
predictions=svmPredict(model,Xval);
error=mean(double(predictions~=yval));
if(error<minerror)
minerror=error;
minC=curc;
minsigma=cursigma;
end
endfor
endfor C=minC;
sigma=minsigma; % ========================================================================= end
3.Vocabulary List
function word_indices = processEmail(email_contents)
%PROCESSEMAIL preprocesses a the body of an email and
%returns a list of word_indices
% word_indices = PROCESSEMAIL(email_contents) preprocesses
% the body of an email and returns a list of indices of the
% words contained in the email.
% % Load Vocabulary
vocabList = getVocabList(); % Init return value
word_indices = []; % ========================== Preprocess Email =========================== % Find the Headers ( \n\n and remove )
% Uncomment the following lines if you are working with raw emails with the
% full headers % hdrstart = strfind(email_contents, ([char(10) char(10)]));
% email_contents = email_contents(hdrstart(1):end); % Lower case
email_contents = lower(email_contents); % Strip all HTML
% Looks for any expression that starts with < and ends with > and replace
% and does not have any < or > in the tag it with a space
email_contents = regexprep(email_contents, '<[^<>]+>', ' '); % Handle Numbers
% Look for one or more characters between 0-9
email_contents = regexprep(email_contents, '[0-9]+', 'number'); % Handle URLS
% Look for strings starting with http:// or https://
email_contents = regexprep(email_contents, ...
'(http|https)://[^\s]*', 'httpaddr'); % Handle Email Addresses
% Look for strings with @ in the middle
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr'); % Handle $ sign
email_contents = regexprep(email_contents, '[$]+', 'dollar'); % ========================== Tokenize Email =========================== % Output the email to screen as well
fprintf('\n==== Processed Email ====\n\n'); % Process file
l = 0; while ~isempty(email_contents) % Tokenize and also get rid of any punctuation
[str, email_contents] = ...
strtok(email_contents, ...
[' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]); % Remove any non alphanumeric characters
str = regexprep(str, '[^a-zA-Z0-9]', ''); % Stem the word
% (the porterStemmer sometimes has issues, so we use a try catch block)
try str = porterStemmer(strtrim(str));
catch str = ''; continue;
end; % Skip the word if it is too short
if length(str) < 1
continue;
end % Look up the word in the dictionary and add to word_indices if
% found
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to add the index of str to
% word_indices if it is in the vocabulary. At this point
% of the code, you have a stemmed word from the email in
% the variable str. You should look up str in the
% vocabulary list (vocabList). If a match exists, you
% should add the index of the word to the word_indices
% vector. Concretely, if str = 'action', then you should
% look up the vocabulary list to find where in vocabList
% 'action' appears. For example, if vocabList{18} =
% 'action', then, you should add 18 to the word_indices
% vector (e.g., word_indices = [word_indices ; 18]; ).
%
% Note: vocabList{idx} returns a the word with index idx in the
% vocabulary list.
%
% Note: You can use strcmp(str1, str2) to compare two strings (str1 and
% str2). It will return 1 only if the two strings are equivalent.
% for idx=1:length(vocabList),
if(strcmp(vocabList{idx},str)==1)
word_indices=[word_indices;idx];
end
endfor % ============================================================= % Print to screen, ensuring that the output lines are not too long
if (l + length(str) + 1) > 78
fprintf('\n');
l = 0;
end
fprintf('%s ', str);
l = l + length(str) + 1; end % Print footer
fprintf('\n\n=========================\n'); end
4.emailFeatures
function x = emailFeatures(word_indices)
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
%from the word indices
% x = EMAILFEATURES(word_indices) takes in a word_indices vector and
% produces a feature vector from the word indices. % Total number of words in the dictionary
n = 1899; % You need to return the following variables correctly.
x = zeros(n, 1); % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return a feature vector for the
% given email (word_indices). To help make it easier to
% process the emails, we have have already pre-processed each
% email and converted each word in the email into an index in
% a fixed dictionary (of 1899 words). The variable
% word_indices contains the list of indices of the words
% which occur in one email.
%
% Concretely, if an email has the text:
%
% The quick brown fox jumped over the lazy dog.
%
% Then, the word_indices vector for this text might look
% like:
%
% 60 100 33 44 10 53 60 58 5
%
% where, we have mapped each word onto a number, for example:
%
% the -- 60
% quick -- 100
% ...
%
% (note: the above numbers are just an example and are not the
% actual mappings).
%
% Your task is take one such word_indices vector and construct
% a binary feature vector that indicates whether a particular
% word occurs in the email. That is, x(i) = 1 when word i
% is present in the email. Concretely, if the word 'the' (say,
% index 60) appears in the email, then x(60) = 1. The feature
% vector should look like:
%
% x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
%
% for i=1:length(word_indices),
x(word_indices(i))=1;
endfor % ========================================================================= end
Machine learning 第7周编程作业 SVM的更多相关文章
- Machine learning第6周编程作业
1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC ...
- Machine learning 第8周编程作业 K-means and PCA
1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...
- Machine learning 第5周编程作业
1.Sigmoid Gradient function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigm ...
- Machine learning第四周code 编程作业
1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业
做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
- Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)
In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...
随机推荐
- Region在connection前后进行“交并差”等操作的异同
connection直译为“连接”.其实它的功能不是连接,它的功能是确定区域之间的连接关系,如果简单粗暴地解释的话,可以认为:connection的意思是“打散”,将不连接的区域打散成一个一个的区域. ...
- wCF 问题收集页
1.设置最大序列化集合元素个数 http://msdn.microsoft.com/zh-cn/library/system.runtime.serialization.datacontractser ...
- 使用WindowsFormsApplicationBase实现引导界面
1.需要添加对Microsoft.VisualBasic 引用, 2.准备frmMain,frmSplash两个窗口 说明: frmSplash在主线程上建立,但是在独立线程上进行消息循 ...
- 检测Linux系统是否支持某系统调用
随内核版本的变化,会增加一些新的系统调用,但如果glibc没有跟上,则不能直接调用,这个时候可以自己包装一下.如果想知道内核是否支持某系统调用,先得知道它的系统调用ID号,下面代码即是用来检查是否支持 ...
- Spring源码解析 - ListableBeanFactory
Extension of the {@link BeanFactory} interface to be implemented by bean factories that can enumerat ...
- Codeforces758D Ability To Convert 2017-01-20 10:29 231人阅读 评论(0) 收藏
D. Ability To Convert time limit per test 1 second memory limit per test 256 megabytes input standar ...
- Python WebDriver 文件上传(一)
昨天写了Web 文件下载的ui自动化,下载之后,今天就要写web 文件上传的功能了. 当然从折腾了俩小时才上传成功.下面写一下自己操作的步骤 首先网上说的有很多方法 如 input 标签的最好做了,直 ...
- jsp中路径的写法
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况 代码” ${pageContext.request.context ...
- 个人介绍&我的GitHub注册经历&初步使用
(1)个人介绍 我叫刘雨恬,目前是南通大学计科院网络工程141班的一名大二的学生,学号1413042004.由于学习软件工程的需要,我注册了cnblogs的这个博客账号,方便以后的学习交流.在兴趣爱好 ...
- 利用InfoPath实现SharePoint Server 2013列表的级联选择(Cascading Drop Down List)
最近在利用SharePoint Server 2013的列表组织和存储数据,发现SharePoint列表原始不支持级联选择的功能. 谷歌百度一通以后,发现了很多通过代码实现的方案,利用第三方的插件sp ...