Machine learning 第7周编程作业 SVM
1.Gaussian Kernel
function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
% sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
% and returns the value in sim % Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:); % You need to return the following variables correctly.
sim = 0; % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
% and x2 computed using a Gaussian kernel with bandwidth
% sigma
%
% m=length(x1)
sum=0
for i=1:m,
sum=sum-((x1(i)-x2(i))^2)
endfor sim=exp(sum/(2*sigma^2)) % ============================================================= end
2.Example Dataset 3
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
% % You need to return the following variables correctly.
C = 1;
sigma = 0.3; % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
steps=[0.01,0.03,0.1,0.3,1,3,10,30];
minerror=Inf;
minC=Inf;
minsigma=Inf; for i=1:length(steps),
for j=1:length(steps),
curc=steps(i);
cursigma=steps(j);
model=svmTrain(X,y,curc,@(x1,x2)gaussianKernel(x1,x2,cursigma));
predictions=svmPredict(model,Xval);
error=mean(double(predictions~=yval));
if(error<minerror)
minerror=error;
minC=curc;
minsigma=cursigma;
end
endfor
endfor C=minC;
sigma=minsigma; % ========================================================================= end
3.Vocabulary List
function word_indices = processEmail(email_contents)
%PROCESSEMAIL preprocesses a the body of an email and
%returns a list of word_indices
% word_indices = PROCESSEMAIL(email_contents) preprocesses
% the body of an email and returns a list of indices of the
% words contained in the email.
% % Load Vocabulary
vocabList = getVocabList(); % Init return value
word_indices = []; % ========================== Preprocess Email =========================== % Find the Headers ( \n\n and remove )
% Uncomment the following lines if you are working with raw emails with the
% full headers % hdrstart = strfind(email_contents, ([char(10) char(10)]));
% email_contents = email_contents(hdrstart(1):end); % Lower case
email_contents = lower(email_contents); % Strip all HTML
% Looks for any expression that starts with < and ends with > and replace
% and does not have any < or > in the tag it with a space
email_contents = regexprep(email_contents, '<[^<>]+>', ' '); % Handle Numbers
% Look for one or more characters between 0-9
email_contents = regexprep(email_contents, '[0-9]+', 'number'); % Handle URLS
% Look for strings starting with http:// or https://
email_contents = regexprep(email_contents, ...
'(http|https)://[^\s]*', 'httpaddr'); % Handle Email Addresses
% Look for strings with @ in the middle
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr'); % Handle $ sign
email_contents = regexprep(email_contents, '[$]+', 'dollar'); % ========================== Tokenize Email =========================== % Output the email to screen as well
fprintf('\n==== Processed Email ====\n\n'); % Process file
l = 0; while ~isempty(email_contents) % Tokenize and also get rid of any punctuation
[str, email_contents] = ...
strtok(email_contents, ...
[' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]); % Remove any non alphanumeric characters
str = regexprep(str, '[^a-zA-Z0-9]', ''); % Stem the word
% (the porterStemmer sometimes has issues, so we use a try catch block)
try str = porterStemmer(strtrim(str));
catch str = ''; continue;
end; % Skip the word if it is too short
if length(str) < 1
continue;
end % Look up the word in the dictionary and add to word_indices if
% found
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to add the index of str to
% word_indices if it is in the vocabulary. At this point
% of the code, you have a stemmed word from the email in
% the variable str. You should look up str in the
% vocabulary list (vocabList). If a match exists, you
% should add the index of the word to the word_indices
% vector. Concretely, if str = 'action', then you should
% look up the vocabulary list to find where in vocabList
% 'action' appears. For example, if vocabList{18} =
% 'action', then, you should add 18 to the word_indices
% vector (e.g., word_indices = [word_indices ; 18]; ).
%
% Note: vocabList{idx} returns a the word with index idx in the
% vocabulary list.
%
% Note: You can use strcmp(str1, str2) to compare two strings (str1 and
% str2). It will return 1 only if the two strings are equivalent.
% for idx=1:length(vocabList),
if(strcmp(vocabList{idx},str)==1)
word_indices=[word_indices;idx];
end
endfor % ============================================================= % Print to screen, ensuring that the output lines are not too long
if (l + length(str) + 1) > 78
fprintf('\n');
l = 0;
end
fprintf('%s ', str);
l = l + length(str) + 1; end % Print footer
fprintf('\n\n=========================\n'); end
4.emailFeatures
function x = emailFeatures(word_indices)
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
%from the word indices
% x = EMAILFEATURES(word_indices) takes in a word_indices vector and
% produces a feature vector from the word indices. % Total number of words in the dictionary
n = 1899; % You need to return the following variables correctly.
x = zeros(n, 1); % ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return a feature vector for the
% given email (word_indices). To help make it easier to
% process the emails, we have have already pre-processed each
% email and converted each word in the email into an index in
% a fixed dictionary (of 1899 words). The variable
% word_indices contains the list of indices of the words
% which occur in one email.
%
% Concretely, if an email has the text:
%
% The quick brown fox jumped over the lazy dog.
%
% Then, the word_indices vector for this text might look
% like:
%
% 60 100 33 44 10 53 60 58 5
%
% where, we have mapped each word onto a number, for example:
%
% the -- 60
% quick -- 100
% ...
%
% (note: the above numbers are just an example and are not the
% actual mappings).
%
% Your task is take one such word_indices vector and construct
% a binary feature vector that indicates whether a particular
% word occurs in the email. That is, x(i) = 1 when word i
% is present in the email. Concretely, if the word 'the' (say,
% index 60) appears in the email, then x(60) = 1. The feature
% vector should look like:
%
% x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
%
% for i=1:length(word_indices),
x(word_indices(i))=1;
endfor % ========================================================================= end
Machine learning 第7周编程作业 SVM的更多相关文章
- Machine learning第6周编程作业
1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC ...
- Machine learning 第8周编程作业 K-means and PCA
1.findClosestCentroids function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS compu ...
- Machine learning 第5周编程作业
1.Sigmoid Gradient function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigm ...
- Machine learning第四周code 编程作业
1.lrCostFunction: 和第三周的那个一样的: function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTI ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- c++ 西安交通大学 mooc 第十三周基础练习&第十三周编程作业
做题记录 风影影,景色明明,淡淡云雾中,小鸟轻灵. c++的文件操作已经好玩起来了,不过掌握好控制结构显得更为重要了. 我这也不做啥题目分析了,直接就题干-代码. 总结--留着自己看 1. 流是指从一 ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
- Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)
In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...
随机推荐
- python 多线程简介
Thread类定义了以下常用方法与属性: Thread.getName() \Thread.setName():老方式用于获取和设置线程的名称,官方建议用Thread.name替代 Thread.id ...
- 生产消费者队列(TaskCompletionSource)的应用
using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Li ...
- Java字符串split分割星号*等特殊字符问题(转)
Java的split()方法分割字符串比较常用(见[Java]字符串以某特殊字符分割处理 ),但在有的时候,会遇到星号*等正则表达式中的特殊字符而无法分割的问题. 比如某需求,用户输入产品规格:厚*宽 ...
- 基于Web Service的客户端框架搭建四:终结篇
前言 这是这个系列的终结篇,前面3个博客介绍了一下内容: 1.使用Http Post方式调用Web Service 2.客户端框架之数据转换层 3.客户端框架之代理层 框架结构 框架是基于C#的,在V ...
- c语言技术课第一次作业
读邹欣老师博客关于师生关系有感 1)大学和高中最大的不同是没有人天天看着你,请看大学理想的师生关系是?有何感想? 答: 在邹欣老师博客中我看到邹欣老师列举了很多师生关系的类型,把这种关系比喻成很 ...
- Oracle学习笔记(十)
光标(游标)概念引入 就是一个结果集(查询或者其他操作返回的结果是多个时使用)定义一个光标 cursor c1 is select ename from emp: 从光标中取值 打开光标: --ope ...
- Web挖掘
Web挖掘 Web挖掘的目标是从Web的超链接.网页内容和使用日志中探寻有用的信息.依据Web挖掘任务,可以划分为三种主要类型:Web结构挖掘.Web内容挖掘和Web使用挖掘.Web结构挖掘简单的说就 ...
- 类数组对象 实参对象arguments
先看实参对象arguments 之前对argument有点印象,知道它不是真正的数组,但也可以arguments[0]和arguments.length.今天详细的记录一下. js的默认行为:省略的实 ...
- C#泛型使用小记
最近C#的泛型使用频次略多,特在此记下一个印象深刻的. 情景如下, 基类BaseClass 有一系列的子类 SubClass1, SubClass2, SubClass3... 且其构造函数的参数较多 ...
- 在定制工作项时,把“团队项目”作为变量获取生成版本信息
有用户最近提出这个需求: 通过工作项定制,新增一个字段用以保存项目Bug的"影响版本"信息,但是需要从当前团队项目的服务器生成纪录中获取版本的选项,类似默认模板中的"发现 ...