Elasticsearch NEST – Examples for mapping between Query and C#
During my training with Elasticsearch I would like to map a query with GET/POST method to C# syntax of NEST. It’s very helpful for me to see how NEST composes its internal queries and sends to Elasticsearch server. I just post my sample project here, maybe it’ll help you too.
1. Indexing Employee Documents
PUT /megacorp/employee/1
{
"about": "I love to go rock climbing",
"age": 25,
"firstName": "John",
"id": 1,
"interests": [
"sports",
"music"
],
"lastName": "Smith"
}
|
Employee employee = new Employee()
{
Id = 1,
FirstName = "John",
LastName = "Smith",
Age = 25,
About = "I love to go rock climbing",
Interests = new List<string>() { "sports", "music" }
};
await client.IndexAsync(employee);
|
2. Retrieving a Document
GET /megacorp/employee/1
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "1",
"_version" : 9,
"found" : true,
"_source" : {
"about" : "I love to go rock climbing",
"age" : 25,
"firstName" : "John",
"id" : 1,
"interests" : [ "sports", "music" ],
"lastName" : "Smith"
}
}
|
public async Task<T> GetById(int id)
{
var response = await client.GetAsync<T>(new DocumentPath<T>(id), g => g.Index(defaultIndex).Type(defaultType));
return response.Source;
}
|
3. Search Lite
We will search for all employees, with this request
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{}
|
public async Task<IEnumerable<T>> SearchAsync()
{
var response = await client.SearchAsync<T>(s => s.Type(defaultType));
return response.Documents;
}
|
4. Search with Query DSL
We can represent the search for all Smiths like so
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"query": {
"match": {
"lastName": {
"query": "Smith"
}
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Query(q => q.Match(m => m.Field(f => f.LastName).Query("Smith"))));
Result = result.Documents;
}
|
5. Search with Query String
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"query": {
"query_string": {
"query": "Smith",
"fields": [
"lastName"
]
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Query(q => q.QueryString(qs =>
qs.Fields(f => f.Field(fi => fi.LastName))
.Query("Smith"))));
Result = result.Documents;
}
|
6. More-Complicated Searches
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"query": {
"bool": {
"must": [
{
"match": {
"lastName": {
"query": "smith"
}
}
}
],
"filter": [
{
"range": {
"age": {
"gt": 30.0
}
}
}
]
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Query(q => q.Bool(b =>
b.Filter(f =>
f.Range(r =>
r.Field(fi => fi.Age).GreaterThan(30)))
.Must(m =>
m.Match(ma =>
ma.Field(fie => fie.LastName).Query("smith")))
)));
Result = result.Documents;
}
|
7. Full-Text Search
We are going to search for all employees who enjoy “rock climbing”, “rock” or “climbing”.
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"query": {
"match": {
"about": {
"query": "rock climbing"
}
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Query(q =>
q.Match(m =>
m.Field(f => f.About).Query("rock climbing"))
));
Result = result.Documents;
}
|
8. Phrase Search
Finding individual words in a field is all well and good, but sometimes you want to
match exact sequences of words or phrases. For instance, we could perform a query
that will match only employee records that contain both “rock” and “climbing” and
that display the words are next to each other in the phrase “rock climbing.”
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"query": {
"match": {
"about": {
"type": "phrase",
"query": "rock climbing"
}
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Query(q =>
q.MatchPhrase(m =>
m.Field(f => f.About).Query("rock climbing"))
));
Result = result.Documents;
}
|
9. Highlighting Our Searches
Many applications like to highlight snippets of text from each search result so the user
can see why the document matched the query
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"highlight": {
"fields": {
"about": {}
}
},
"query": {
"match": {
"about": {
"type": "phrase",
"query": "rock climbing"
}
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Query(q =>
q.MatchPhrase(m =>
m.Field(f => f.About).Query("rock climbing")))
.Highlight(h => h.Fields(fi => fi.Field(fie => fie.About)))
);
Result = result.Hits;
}
|
10. Analytics
Let’s find the most popular interests enjoyed by our employees
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
}
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Aggregations(a =>
a.Terms("all_interests", t =>
t.Field(f => f.Interests)))
);
Result = result.Aggregations;
}
|
11. Analytics limit
If we want to know the popular interests of people called Smith, we can just add the appropriate query into the mix:
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
}
}
},
"query": {
"match": {
"lastName": {
"query": "smith"
}
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Query(q =>
q.Match(m =>
m.Field(fi =>
fi.LastName).Query("smith")))
.Aggregations(a =>
a.Terms("all_interests", t =>
t.Field(f => f.Interests)))
);
Result = result.Aggregations;
}
|
12. Analytics with Average
POST http://localhost:9200/megacorp/employee/_search?pretty=true
{
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
},
"aggs": {
"avg_age": {
"avg": {
"field": "age"
}
}
}
}
}
}
|
public async Task ExecuteAsync()
{
var result = await client.SearchAsync<Employee>(
s =>
s.Type(typeEmployee)
.Aggregations(a =>
a.Terms("all_interests", t =>
t.Field(f =>
f.Interests)
.Aggregations(ag =>
ag.Average("avg_age", av =>
av.Field(fi => fi.Age)))
)
)
);
Result = result.Aggregations;
}
|
13. Retrieving Part of a Document
GET http://localhost:9200/website/blog/123?pretty=true&fields=title%2Ctext
|
public async Task ExecuteAsync()
{
var response =
await client.GetAsync(new DocumentPath<Blog>(123), g =>
g.Fields(f => f.Title, f => f.Text));
Result = response.Fields;
}
|
14. Updating a Whole Document
PUT http://localhost:9200/website/blog/123?pretty=true
{
"date": "2014-01-01T00:00:00",
"id": 123,
"text": "I am staring to get the hang of this...",
"title": "My first blog entry"
}
|
public async Task ExecuteAsync()
{
var blog = new Blog()
{
Id = 123,
Title = "My first blog entry",
Text = "I am staring to get the hang of this...",
Date = new DateTime(2014, 1, 1)
};
Result = await client.UpdateAsync(new DocumentPath<Blog>(123), u => u.Doc(blog));
}
|
15. Partial Updates to Documents
POST http://localhost:9200/website/blog/1/_update?pretty=true
{
"doc": {
"tags": [
"testing"
],
"views": 0
}
}
|
public async Task ExecuteAsync()
{
var blog = new Blog()
{
Id = 1,
Title = "My first blog entry",
Text = "Just trying this out..."
};
await client.IndexAsync(blog);
dynamic dyn = new ExpandoObject();
dyn.Tags = new List<string>() { "testing" };
dyn.Views = 0;
Result = await client.UpdateAsync<Blog, dynamic>(new DocumentPath<Blog>(1), u =>
u.Doc(dyn));
}
|
16. Deleting a Document
DELETE http://localhost:9200/website/blog/123?pretty=true
|
public async Task ExecuteAsync()
{
Result = await client.DeleteAsync(new DocumentPath<Blog>(123));
}
|
17. Cluster Health
GET http://localhost:9200/_cluster/health?pretty=true
|
public async Task ExecuteAsync()
{
Result = await client.ClusterHealthAsync();
}
|
18. Add an Index
PUT http://localhost:9200/blogs?pretty=true
{
"settings": {
"index.number_of_replicas": 1,
"index.number_of_shards": 3
}
}
|
public async Task ExecuteAsync()
{
Result = await client.CreateIndexAsync("blogs", c =>
c.Settings(s =>
s.NumberOfShards(3)
.NumberOfReplicas(1)));
}
|
19. Retrieving Part of a Document
GET http://localhost:9200/website/blog/123?pretty=true&_source_include=title%2Ctext
|
public async Task ExecuteAsync()
{
Result =
await client.GetAsync<Blog>(new DocumentPath<Blog>(123), g =>
g.SourceInclude("title", "text"));
}
|
20. Using Versions from an External System
PUT http://localhost:9200/website/blog/2?pretty=true&version=25&version_type=external
{
"date": "0001-01-01T00:00:00",
"id": 0,
"text": "Starting to get the hang of this...",
"title": "My first external blog entry",
"views": 0
}
|
public async Task ExecuteAsync()
{
var getResponse = (await client.GetAsync<Blog>(new DocumentPath<Blog>(2)));
var blog = getResponse.Source;
long version;
if (blog == null)
{
blog = new Blog()
{
Title = "My first external blog entry",
Text = "Starting to get the hang of this..."
};
var result = await client.IndexAsync(blog, i => i.Id(2));
version = result.Version;
}
else
version = getResponse.Version;
Result = await client.IndexAsync(blog, i => i.Id(2).Version(version + 5).VersionType(VersionType.External));
}
|
21. Using Scripts to Make Partial Updates
POST http://localhost:9200/website/blog/1/_update?pretty=true
{
"script": "ctx._source.views += 1"
}
|
public async Task ExecuteAsync()
{
Result = await client.UpdateAsync(new DocumentPath<Blog>(1), u =>
u.Script("ctx._source.views += 1"));
}
|
POST http://localhost:9200/website/blog/1/_update?pretty=true
{
"script": "ctx._source.tags+=new_tag",
"params": {
"new_tag": "search"
}
}
|
public async Task ExecuteAsync()
{
Result = await client.UpdateAsync(new DocumentPath<Blog>(1), u =>
u.Script("ctx._source.tags+=new_tag")
.Params(p => p.Add("new_tag", "search")));
}
|
POST http://localhost:9200/website/blog/1/_update?pretty=true
{
"script": "ctx.op = ctx._source.views == count ? 'delete' : 'none'",
"params": {
"count": "1"
}
}
|
Result = await client.UpdateAsync(new DocumentPath<Blog>(1), u =>
u.Script("ctx.op = ctx._source.views == count ? 'delete' : 'none'")
.Params(p => p.Add("count", "1")));
|
22. Updating a Document That May Not Yet Exist
Imagine that we need to store a page view counter in Elasticsearch. Every time that a user views a page, we increment the counter for that page. But if it is a new page, we can’t be sure that the counter already exists. If we try to update a nonexistent document, the update will fail.
In cases like these, we can use the upsert parameter to specify the document that should be created if it doesn’t already exist
POST http://localhost:9200/website/pageviews/1/_update?pretty=true
{
"script": "ctx._source.views+=1",
"upsert": {
"id": 0,
"views": 1
}
}
|
public async Task ExecuteAsync()
{
Result = await client.UpdateAsync(new DocumentPath<PageViews>(1), u =>
u.Script("ctx._source.views+=1")
.Upsert(new PageViews() { Views = 1 }));
}
|
23. Updates and Conflicts
POST http://localhost:9200/website/pageviews/1/_update?pretty=true&retry_on_conflict=5
{
"script": "ctx._source.views+=1",
"upsert": {
"id": 1,
"views": 0
}
}
|
Result = await client.UpdateAsync(new DocumentPath<PageViews>(1), u =>
u.Script("ctx._source.views+=1")
.Upsert(new PageViews { Id = 1, Views = 0 })
.RetryOnConflict(5));
|
24. Retrieving Multiple Documents
POST http://localhost:9200/_mget?pretty=true
{
"docs": [
{
"_index": "website",
"_type": "blog",
"_id": 2
},
{
"_index": "website",
"_type": "pageviews",
"_id": 1
}
]
}
|
public async Task ExecuteAsync()
{
Result = await client.MultiGetAsync(m =>
m.Get<Blog>(g =>
g.Id(2))
.Get<PageViews>(ge =>
ge.Id(1))
);
}
|
POST http://localhost:9200/website/blog/_mget?pretty=true
{
"ids": [
2,
1
]
}
|
Result = await client.MultiGetAsync(m =>
m.Index(indexWebsite)
.Type(typeBlog)
.GetMany<Blog>(new long[] { 2, 1 }));
|
100. Source code
Source code: https://bitbucket.org/hintdesk/dotnet-elasticsearch-nest-examples-for-mapping-between-query
- ElasticSearch NEST笔记
ElasticSearch NEST笔记 1. 什么是ElasticSearch? ElasticSearch is a powerful open source search and analyti ...
- Creating a custom analyzer in ElasticSearch Nest client
Creating a custom analyzer in ElasticSearch Nest client Question: Im very very new to elasticsearch ...
- elasticsearch index 之 put mapping
elasticsearch index 之 put mapping mapping机制使得elasticsearch索引数据变的更加灵活,近乎于no schema.mapping可以在建立索引时设 ...
- Elasticsearch(八)【NEST高级客户端--Mapping映射】
要使用NEST与Elasticsearch进行交互,我们需要能够将我们的解决方案中的POCO类型映射到存储在Elasticsearch中的反向索引中的JSON文档和字段.本节介绍NEST中可用的所有不 ...
- Elasticsearch NEST 控制字段名称命名格式
在使用NEST操作elasticsearch时,字段名会根据model中字段,默认为首字母小写. 如果需要调整NEST的默认明个规则,可以在 ConnectionSettings中进行自定义. var ...
- Elasticsearch NEST使用指南:映射和分析
NEST提供了多种映射方法,这里介绍下通过Attribute自定义映射. 一.简单实现 1.定义业务需要的POCO,并指定需要的Attribute [ElasticsearchType(Name = ...
- ElasticSearch基础之映射mapping
[01]什么是mapping? 首先去看看官方文档,非常重要:https://www.elastic.co/guide/en/elasticsearch/reference/current/mappi ...
- elasticsearch入门使用(三) Query DSL
Elasticsearch Reference [6.2] » Query DSL 参考官方文档 :https://www.elastic.co/guide/en/elasticsearch/refe ...
- Elasticsearch学习系列之mapping映射
什么是映射 为了能够把日期字段处理成日期,把数字字段处理成数字,把字符串字段处理成全文本(Full-text)或精确(Exact-value)的字符串值,Elasticsearch需要知道每个字段里面 ...
随机推荐
- tensorflow笔记 :常用函数说明
常用函数说明,梯度.产生变量等 http://blog.csdn.net/c2a2o2/article/details/69061539
- Kubernetes集群向指定节点上创建容器
如果需要限制Pod到指定的Node上运行,则可以给Node打标签并给Pod配置NodeSelector. 给节点添加标签 首先查看节点信息 [root@k8s-master ~]# kubectl g ...
- Kubernetes集群的安装部署
此文参照https://www.cnblogs.com/zhenyuyaodidiao/p/6500830.html,并根据实操过程略作修改. 1.环境介绍及准备: 1.1 物理机操作系统 物理机操作 ...
- web和wap网站的区别 (转)
WAP的全称是“无线应用协议(Wireless Application Protocol)”,是一种向移动终端提供互联网内容和先进增值服务的全球统一的开放式协议标准, 是简化了的无线Internet ...
- python安装h5py
sudo pip install cython sudo apt-get install libhdf5-dev sudo pip install h5py test: python import h ...
- 温(Xue)习排序算法
最近忙着找工作,虽然排序算法用得到的情况不多,但不熟悉的话心里始终还是感觉没底. 于是今天给温习了其中的四个排序算法(与其说是温习,不如说是学习...因为感觉自己好像从来木有掌握过它们...) 一.选 ...
- Kubuntu中thunderbird最小化到任务栏
作为邮件客户端,如果没有办法显示在任务栏中,实在是说不过去.遗憾的是thunderbird默认真不带这个功能(因为Linux的桌面系统太混乱了?)... 当然,解决也十分简单,只要安装Firetray ...
- 命令--cut
--按文件大小排序 显示前100行 显示后五列 ll -Sh|head -n 100|cut -d ' ' -f 5- 一.基本语法cut是一个选取命令,以行为单位,用指定分隔符将行切分为若干字段,选 ...
- Qt Image Water Marker
QString str = "input.jpg"; if(!img.load(str)){ return; } QImage mark(img.width()/2,img.hei ...
- 让Asp.Net WebAPI支持OData查询,排序,过滤。(转)
出处:http://www.cnblogs.com/liuzhendong/p/4233380.html 让Asp.Net WebAPI支持OData后,就能支持在url中直接输入排序,过滤条件了. ...