zoj-3329-期望/dp/方程优化
One Person Game
Time Limit: 1 Second Memory Limit: 32768 KB Special Judge
There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:
- Set the counter to 0 at first.
- Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
- If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.
Calculate the expectation of the number of times that you cast dice before the end of the game.
Input
There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).
Output
For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.
Sample Input
2
0 2 2 2 1 1 1
0 6 6 6 1 1 1
Sample Output
1.142857142857143
1.004651162790698
f[i]表示已经得到i分之后距离目标的期望次数,pk表示得分为k的概率,则有f[i]=SUM{ p[k]*f[i+k] } + p0*f[0] + 1 ,因为下一次操作可能清零或者组合成其他点数,要分开讨论。这个式子无法直接递推,我们需要简化一下。
可以看出f[i]均和f[0]有关,不妨令f[i]=A[i]*f[0]+B[i] ,带入上式得到 f[i]=(sum{ p[k]*A[i+k] } + p0)*f[0]+(SUM{ pk*B[i+k] } +1 ) ,可以看出A[i]=SUM{ pk*A[i+k] }+p0 , B[i]=SUM{ pk*B[i+k] }+1 ,A[i]和B[i]可以递推得到,所以答案就是A[0]/(1-B[0]);
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-12 double p[];
double A[],B[];
int main()
{
int n,m,i,j,k,t;
int k1,k2,k3,a,b,c;
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
double p0=(double)1.0/k1/k2/k3;
memset(A,,sizeof(A));
memset(B,,sizeof(B));
memset(p,,sizeof(p));
for(i=;i<=k1;++i){
for(j=;j<=k2;++j){
for(k=;k<=k3;++k){
p[i+j+k]+=p0;
}
}
}
p[a+b+c]-=p0;
for(i=n;i>=;--i){
A[i]=p0;
B[i]=;
for(j=;j<;++j)
A[i]+=p[j]*A[i+j],
B[i]+=p[j]*B[i+j];
}
printf("%.15f\n",B[]/(-A[]));
}
return ;
}
zoj-3329-期望/dp/方程优化的更多相关文章
- ZOJ 3329 期望DP
题目大意: 给定3个已经规定好k1,k2,k3面的3个色子,如果扔到a,b,c则重新开始从1 计数,否则不断叠加所有面的数字之和,直到超过n,输出丢的次数的数学期望 我们在此令dp[]数组记录从当前数 ...
- 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra
题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...
- zoj 3329 概率dp
题意:有三个骰子,分别有k1,k2,k3个面.每个面值为1--kn每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和.当分数大于n时结束.求游戏的期望步数.初始分数为0 链接 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- poj 2096 , zoj 3329 , hdu 4035 —— 期望DP
题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...
- loj6171/bzoj4899 记忆的轮廊(期望dp+优化)
题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...
- ZOJ - 3632 DP 单调优化
题意:买瓜,每天的瓜有不同的价格和xu命时间,要求能苟到第n天的最小代价 定义DP方程\(dp[i]\),指苟到第\(i\)天的最小代价,所求即为\(dp[n]\) 那么怎么转移就是问题,这里的状态表 ...
随机推荐
- ruby rvm groke
https://ruby-china.org/wiki/rvm-guide http://www.cnblogs.com/peak-c/p/7338291.html https://doc.yonyo ...
- SQL Server 复制(Replication) ——事务复制搭建
本文演示如何搭建最基本的事务复制. 环境准备: 虚拟机2台: 服务器名分别为RepA和RepB,RepA为发布服务器,RepB为订阅服务器.均安装WindowsServer 2008R2英文版(在外企 ...
- js-jquery-SweetAlert2【二】配置与方法
一.配置 Argument Default value Description title null 模态对话框的标题.它可以在参数对象的title参数中设置,也可以在swal()方法的第一个参数 ...
- 详解javascript实现自定义事件
这篇文章主要为大家介绍了javascript实现自定义事件的方法,自定义事件,顾名思义,就是自己定义事件类型,自己定义事件处理函数,javascript如何实现自定义事件,需要了解的朋友可以参考下 我 ...
- Mybatis 创建Configuration对象
Mybatis 创建Configuration对象是在项目启动时就创建了. 具体创建流程为: https://blog.csdn.net/wolfcode_cn/article/details/80 ...
- 基于Kafka+Spark Streaming+HBase实时点击流案例
背景 Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver- ...
- 嵌入式linux内核制作、根文件系统制作
嵌入式系统构成: 主要由bootloader.kernel.以及根文件系统三部分组成. 内核制作步骤: 制作嵌入式平台使用的linux内核制作方法与pc平台上的linux内核基本一致 1.清除原有配置 ...
- 文件上传—SSM框架文件上传
1.准备上传下载的api组件 <dependency> <groupId>commons-io</groupId> <artifactId>common ...
- Bootstrap table前端分页(ssm版)
说明bootstrap table可以前端分页,也可以后端sql用limit分页.前端分页下性能和意义都不大,故一般情况下不用这种,请看我的另一篇后端分页的博客源码下载地址:https://git.o ...
- jmeter导入csv压测
压测csv数据源(设置为utf-8格式),jmeter不需要第一行参数名 新建一个线程组,根据压测数据调整设置需要的循环次数(测试数据有9行,设置循环次数为9) 添加http头信息 Content-T ...