zoj-3329-期望/dp/方程优化
One Person Game
Time Limit: 1 Second Memory Limit: 32768 KB Special Judge
There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:
- Set the counter to 0 at first.
- Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
- If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.
Calculate the expectation of the number of times that you cast dice before the end of the game.
Input
There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).
Output
For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.
Sample Input
2
0 2 2 2 1 1 1
0 6 6 6 1 1 1
Sample Output
1.142857142857143
1.004651162790698
f[i]表示已经得到i分之后距离目标的期望次数,pk表示得分为k的概率,则有f[i]=SUM{ p[k]*f[i+k] } + p0*f[0] + 1 ,因为下一次操作可能清零或者组合成其他点数,要分开讨论。这个式子无法直接递推,我们需要简化一下。
可以看出f[i]均和f[0]有关,不妨令f[i]=A[i]*f[0]+B[i] ,带入上式得到 f[i]=(sum{ p[k]*A[i+k] } + p0)*f[0]+(SUM{ pk*B[i+k] } +1 ) ,可以看出A[i]=SUM{ pk*A[i+k] }+p0 , B[i]=SUM{ pk*B[i+k] }+1 ,A[i]和B[i]可以递推得到,所以答案就是A[0]/(1-B[0]);
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-12 double p[];
double A[],B[];
int main()
{
int n,m,i,j,k,t;
int k1,k2,k3,a,b,c;
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
double p0=(double)1.0/k1/k2/k3;
memset(A,,sizeof(A));
memset(B,,sizeof(B));
memset(p,,sizeof(p));
for(i=;i<=k1;++i){
for(j=;j<=k2;++j){
for(k=;k<=k3;++k){
p[i+j+k]+=p0;
}
}
}
p[a+b+c]-=p0;
for(i=n;i>=;--i){
A[i]=p0;
B[i]=;
for(j=;j<;++j)
A[i]+=p[j]*A[i+j],
B[i]+=p[j]*B[i+j];
}
printf("%.15f\n",B[]/(-A[]));
}
return ;
}
zoj-3329-期望/dp/方程优化的更多相关文章
- ZOJ 3329 期望DP
题目大意: 给定3个已经规定好k1,k2,k3面的3个色子,如果扔到a,b,c则重新开始从1 计数,否则不断叠加所有面的数字之和,直到超过n,输出丢的次数的数学期望 我们在此令dp[]数组记录从当前数 ...
- 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra
题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...
- zoj 3329 概率dp
题意:有三个骰子,分别有k1,k2,k3个面.每个面值为1--kn每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和.当分数大于n时结束.求游戏的期望步数.初始分数为0 链接 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- poj 2096 , zoj 3329 , hdu 4035 —— 期望DP
题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...
- loj6171/bzoj4899 记忆的轮廊(期望dp+优化)
题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...
- ZOJ - 3632 DP 单调优化
题意:买瓜,每天的瓜有不同的价格和xu命时间,要求能苟到第n天的最小代价 定义DP方程\(dp[i]\),指苟到第\(i\)天的最小代价,所求即为\(dp[n]\) 那么怎么转移就是问题,这里的状态表 ...
随机推荐
- UA-* headers
HTTP The Definitive Guide Request headers are headers that make sense only in a request message. The ...
- python之sys.stdout、sys.stdin以及设置打印到日志文件等
转自:https://www.cnblogs.com/BigFishFly/p/6622784.html python之sys.stdout.sys.stdin 转自:http://www.cnblo ...
- 三种空格unicode(\u00A0,\u0020,\u3000)表示的区别
1.不间断空格\u00A0,主要用在office中,让一个单词在结尾处不会换行显示,快捷键ctrl+shift+space ; 2.半角空格(英文符号)\u0020,代码中常用的; 3.全角空格(中文 ...
- Farthest Nodes in a Tree ---LightOj1094(树的直径)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1094 Given a tree (a connected graph with no ...
- 【JEECG技术博文】JEECG表单配置-树形表单
表单配置支持树型表单了,详细效果例如以下图:
- 【Python】sasa版:文件中csv读取在写入csv读取的数据和执行是否成功。
sasa写的文件(包含解析文字) # coding=utf- from selenium import webdriver from time import sleep import keyword ...
- 用Python实现的数据结构与算法:堆栈
一.概述 堆栈(Stack)是一种后进先出(LIFO)的线性数据结构,对堆栈的插入和删除操作都只能在栈顶(top)进行. 二.ADT 堆栈ADT(抽象数据类型)一般提供以下接口: Stack() 创建 ...
- redis.conf配置文件说明
# Redis 配置文件 # 当配置中需要配置内存大小时,可以使用 1k, 5GB, 4M 等类似的格式,其转换方式如下(不区分大小写) # # 1k => 1000 bytes # 1kb = ...
- mysql性能测试-tpcc
mysql性能测试-tpcc Tpcc-mysql TPC-C是专门针对联机交易处理系统(OLTP系统)的规范 Tpcc-mysql由percona根据规范实现 TPCC流程 更能模拟线上业务 ...
- [华为]输出单向链表中倒数第k个结点
输入一个单向链表,输出该链表中倒数第k个结点,链表的倒数第1个结点为链表的尾指针. 链表结点定义如下: struct ListNode { int m_nKey; ListNode* m_ ...