[BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘
4870: [Shoi2017]组合数问题
Time Limit: 10 Sec Memory Limit: 512 MB
Description
Input
Output
Sample Input
Sample Output
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=;
LL n,p,k,r;
struct marx
{
LL m[N][N];
inline void print()
{
for(int i=;i<k;i++)
{
for(int j=;j<k;j++)
printf("%lld ",m[i][j]);
printf("\n");
}
printf("\n");
}
inline void clear(){memset(m,,sizeof(m));}
marx operator * (const marx &b) const
{
marx c;c.clear();
for(int i=;i<k;i++)
for(int j=;j<k;j++)
for(int u=;u<k;u++)
c.m[i][j]=(c.m[i][j]+m[i][u]*b.m[u][j])%p;
return c;
}
}A,B,C;
int main()
{
scanf("%lld%lld%lld%lld",&n,&p,&k,&r);
A.clear(),B.clear(),C.clear();
C.m[][]=;
for(int j=;j<k;j++)
B.m[j][j]=,A.m[(j-+k)%k][j]++,A.m[j][j]++;
LL tmp=n*k;
while(tmp)
{
if(tmp&)B=B*A;
tmp>>=;A=A*A;
}
C=C*B;
printf("%lld\n",C.m[][r]);
}
[BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘的更多相关文章
- BZOJ4870:[SHOI2017]组合数问题(组合数学,矩阵乘法)
Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- BZOJ4870: [Shoi2017]组合数问题
4870: [Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ...
- bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)
为了1A我居然写了个暴力对拍... 那个式子本质上是求nk个数里选j个数,且j%k==r的方案数. 所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k].. ...
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- BZOJ4870 [Shoi2017]组合数问题 【组合数 + 矩乘】
题目链接 BZOJ4870 题解 \[ans = \sum\limits_{i = 0}^{\infty}{nk \choose ik + r} \pmod p\] 发现实际是求 \[ans = \s ...
- BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法
注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...
- 【BZOJ4870】[Shoi2017]组合数问题 动态规划(矩阵乘法)
[BZOJ4870][Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < ...
- bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]
4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < ...
随机推荐
- php编程知识点2018
一 .PHP基础部分 1.PHP语言的一大优势是跨平台,什么是跨平台? PHP的运行环境最优搭配为Apache+MySQL+PHP,此运行环境可以在不同操作系统(例如windows.Linux等)上配 ...
- C#与mongoDB初始环境搭建
mongoDB官网https://www.mongodb.com/ mongoDB默认安装路径(Windows x64平台) C:\Program Files\MongoDB\Server\3.4\b ...
- selenium自动化之切换iframe
许多人在执行脚本的时候会发现,明明自己的元素路径没写错啊!怎么还是报元素未找到的异常呢?是的,没错,你可能是遇上iframe啦!下面将介绍关于iframe的相关操作. 例子:以163邮箱登录页面为例 ...
- python-__getattr__ 和 __getattribute__
python3完全使用了新式类,废弃了旧式类,getattribute作为新式类的一个特性有非常奇妙的作用.查看一些博客和文章后,发现想要彻底理解getattr和getattribute的区别,实际上 ...
- Halcon算子解释
Halcon算子解释大全 Halcon/Visionpro视频教程和资料,请访问 重码网,网址: http://www.211code.com Chapter 1 :Classification 1. ...
- 获取label标签内for的属性值-js
<body> <div class="row_2" id="ass"> <label for="aaa"> ...
- [shell] awk学习
awk处理最后一行 awk '{if(NR>1)print a;a=$0}END{print a="b"}' file awk 'BEGIN{getline a}{print ...
- 第九周个人PSP
11.10--11.16本周例行报告 1.PSP(personal software process )个人软件过程. C(类别) C(内容) ST(开始时间) ET(结束时间) INT(间隔时间) ...
- 冲刺ing-2
第二次Scrum冲刺 队员完成的任务 队员 完成任务 吴伟华 分配任务 蔺皓雯 编写博客,查阅资料 蔡晨旸 查阅资料 曾茜 暂无 鲁婧楠 暂无 杨池宇 暂无 成员遇到的问题 队员 问题 吴伟华 暂无 ...
- goroutine与channels
goroutine(协程) 大家都知道java中的线程Thread,golang没有提供Thread的功能,但是提供了更轻量级的goroutine(协程),协程比线程更轻,创办一个协程很简单,只需要g ...