[javaSE] 数据结构(二叉查找树-插入节点)
二叉查找树(Binary Search Tree),又被称为二叉搜索树,它是特殊的二叉树,左子树的节点值小于右子树的节点值。
定义二叉查找树
定义二叉树BSTree,它保护了二叉树的根节点BSTNode类型的mRoot,定义内部类BSTNode
包含二叉树的几个基本信息:
key——关键字用来对二叉查找树的节点进行排序
left——指向当前节点的左孩子
right——指向当前节点的右孩子
parent——指向当前节点的父节点
定义插入节点方法insert(T key),参数:T key要插入的对象
创建节点对象,实例化BSTNode对象,构造参数:T对象
定义重载方法insert(BSTree bsTree,BSTNode bstNode)方法,参数:BSTree树对象,BSTNode节点对象
插入节点,分两步,
1.找到节点的父节点位置
2.插入节点到父节点的左位置或者右位置
public class BSTree<T extends Comparable<T>> {
private BSTNode<T> mRoot; /**
* 定义二叉树
*
* @author taoshihan
* @param <T>
*
*/
public class BSTNode<T extends Comparable<T>> {
public T key;
public BSTNode parent, left, right; public BSTNode(T key, BSTNode parent, BSTNode left, BSTNode right) {
this.key = key;
this.parent = parent;
this.left = left;
this.right = right;
}
} public void insert(BSTree bsTree, BSTNode bstNode) {
BSTNode parent = null;
BSTNode x = bsTree.mRoot;
// 查找bstNode的插入位置,x的指针指对
while (x != null) {
parent = x;// 把x的位置作为节点的父类
int flag = bstNode.key.compareTo(x.key);
if (flag < 0) {
x = x.left;
}else{
x=x.right;
}
}
// 插入
bstNode.parent = parent;
if(parent==null){
bsTree.mRoot=bstNode;
}else{
int flag = bstNode.key.compareTo(parent.key);
if (flag < 0) {
parent.left = bstNode;
} else {
parent.right = bstNode;
}
} } /**
* 插入根节点
*
* @param key
*/
public void insert(T key) {
BSTNode<T> z = new BSTNode<T>(key, null, null, null);
// 如果新建结点失败,则返回。
if (z != null)
insert(this, z);
}
/*
* 打印"二叉查找树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(BSTNode<T> tree, T key, int direction) { if(tree != null) { if(direction==0) // tree是根节点
System.out.printf("%2d is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left"); print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
} public void print(BSTree<T> tree) {
if (tree.mRoot != null){
print(tree.mRoot, tree.mRoot.key, 0);
}
}
/**
* @param args
*/
public static void main(String[] args) {
BSTree tree = new BSTree();
tree.insert(3);
tree.insert(1);
tree.insert(2);
tree.insert(5);
tree.insert(4);
tree.insert(6);
tree.print(tree);
} }
输出:
3 is root
1 is 3's left child
2 is 1's right child
5 is 3's right child
4 is 5's left child
6 is 5's right child
[javaSE] 数据结构(二叉查找树-插入节点)的更多相关文章
- lintcode:在二叉查找树中插入节点
题目: 在二叉查找树中插入节点 给定一棵二叉查找树和一个新的树节点,将节点插入到树中. 你需要保证该树仍然是一棵二叉查找树. 样例 给出如下一棵二叉查找树,在插入节点6之后这棵二叉查找树可以是这样 ...
- javascript数据结构与算法--二叉树(插入节点、生成二叉树)
javascript数据结构与算法-- 插入节点.生成二叉树 二叉树中,相对较小的值保存在左节点上,较大的值保存在右节点中 /* *二叉树中,相对较小的值保存在左节点上,较大的值保存在右节点中 * * ...
- 数据结构------------------二叉查找树(BST)的java实现
数据结构------------------二叉查找树(BST)的java实现 二叉查找树(BST)是一种能够将链表插入的灵活性和有序数组查找的高效性相结合的一种数据结构.它的定义如下: 二叉查找树是 ...
- 证明二叉查找树所有节点的平均深度为O(logN)
数据结构与算法分析(c语言描述)第4章 P78 概念一:一棵树所有节点的深度和称为内部路径长 令D(N)为一棵有N节点的树的内部路径长么,即有D(1)=0, 设一棵树的左子树的内部路径长为D(i),则 ...
- HashMap中红黑树插入节点的调整过程
如果有对红黑树的定义及调整过程有过研究,其实很容易理解HashMap中的红黑树插入节点的调整过程. "红黑树定义及调整过程"的参考文章:<红黑树原理.查找效率.插入及变化规则 ...
- Query节点操作,jQuery插入节点,jQuery删除节点,jQuery Dom操作
一.创建节点 var box = $('<div>节点</div>'); //创建一个节点,或者var box = "<div>节点</div> ...
- JQuery_DOM 节点操作之创建节点、插入节点
一.创建节点 为了使页面更加智能化,有时我们想动态的在html 结构页面添加一个元素标签,那么在插入之前首先要做的动作就是:创建节点 <script type="text/javasc ...
- JS中插入节点的方法appendChild和insertBefore的应用
1.appendChild() 方法:可以向节点的子节点列表的末尾添加新的子节点.比如:appendChild(newchild)括号里可以是创建的标签var newchild = document. ...
- zepto源码--插入节点--学习笔记
与生成width和height使用的方法类似,通过`after`, `prepend`, `before`, `append`,这四者之间的共性,生成对应的函数.并根据这四个函数,生成 `insert ...
随机推荐
- 利用CXF生成webservice客户端代码
一.CXF环境的配置 1.下载CXF的zip包. 2.解压.例如:D:\ITSoft\webserviceClientUtils\cxf\apache-cxf-2.7.17 3.配置环境变量:新建变量 ...
- ROS初次实践(小海龟)
启动ROS Master 启动小海龟仿真器 启动海龟控制节点(方向键控制海龟运动) rqt_graph可视化工具 /rosout节点必须存在,订阅所有节点的日志信息. 当前系统当中存在的节点. 了解当 ...
- CPU缓存刷新的误解
即使是资深的技术人员,我经常听到他们谈论某些操作是如何导致一个CPU缓存的刷新.看来这是关于CPU缓存如何工作和缓存子系统如何与执行核心交互的一个常见误区.本文将致力于解释CPU缓存的功能以及执行程序 ...
- mxonline实战-1,创建应用及相应模型
前言 环境说明:python3.5 + django2.0, 用的pycharm4.04专业版 课程视频地址 https://coding.imooc.com/learn/list/78. ...
- JVM调优总结 -Xms -Xmx -Xmn -Xss(转自:iteye unixboy)
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64为操作 ...
- gettimeofday
作用: 需要打印代码执行到某处的时间,或者需要计算程序执行的时间差(精确到微妙级).这时会用到gettimeofday函数,它可以返回自1970-01-01 00:00:00到现在经历的秒数. 原型: ...
- Spark累加器
spark累计器 因为task的执行是在多个Executor中执行,所以会出现计算总量的时候,每个Executor只会计算部分数据,不能全局计算. 累计器是可以实现在全局中进行累加计数. 注意: 累加 ...
- python全栈开发_day15_函数回调和模块
一:函数回调 def a(fn=None): print("run1") if fn: fn() print("run 2") def b(): print(& ...
- 数组或者stack
数组 clear1(long long int array[], size_t int size) { ; i < size; i += ) array[i] = ; } li x5, // i ...
- 防止过拟合:L1/L2正则化
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...