传送门

可以发现,\(\binom{n}{m}\equiv 1(mod~2)\) 当且仅当 \(m~and~n~=~m\)

即 \(m\) 二进制下为 \(n\) 的子集

那么可以直接写一个 \(3^{18}\) 的枚举子集 \(DP\)

但是还有一个 \(6^9\) 的做法

把数字分成前 \(9\) 位和后 \(9\) 位

设 \(f(s_1,s_2)\) 表示前 \(9\) 位为 \(s_1\),后 \(9\) 位为 \(s_2\) 的超集的答案

那么对于一个数 \(x\),分成 \(x_1,x_2\),转移的时候枚举 \(x_1\) 的超集,更新的时候枚举 \(x_2\) 的子集即可

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int maxn(1 << 9);
const int mod(1e9 + 7); inline void Inc(int &x, int y) {
x = x + y >= mod ? x + y - mod : x + y;
} int n, f[maxn][maxn], sz = maxn - 1; int main() {
register int i, j, v, f1, f2, t, g;
scanf("%d", &n);
for (i = 1; i <= n; ++i) {
scanf("%d", &v), f1 = v >> 9, f2 = v & sz, g = 1;
for (t = j = sz ^ f1; ; j = (j - 1) & t) {
Inc(g, f[sz ^ j][f2]);
if (!j) break;
}
for (j = f2; ; j = (j - 1) & f2) {
Inc(f[f1][j], g);
if (!j) break;
}
}
for (g = mod - n, i = 0; i <= sz; ++i) Inc(g, f[i][0]);
printf("%d\n", g);
return 0;
}

BZOJ4903: [Ctsc2017]吉夫特的更多相关文章

  1. bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特

    http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...

  2. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  3. 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP

    题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...

  4. 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp

    题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...

  5. bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...

  6. [CTSC2017]吉夫特

    Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...

  7. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  8. uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划

    题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...

  9. [UOJ300][CTSC2017]吉夫特

    uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...

随机推荐

  1. idea部署tomcat:tomee required to support ear/ejb de。。

    要确定artifact 的type是使用的web application :exploded类型,使用javaee application :exploded就会报这个错误.

  2. 这是一次 docker 入门实践

    前言 其实接触 docker 也有一段时间了,但是一直没有做下总结,现在网上关于 docker 的介绍也有很多了,本着好记性不如烂笔头的原则,还是自己再记录一波吧. 实现目标 安装 docker ce ...

  3. 给对象和函数添加method方法

    蝴蝶书中有一个method方法,用来给函数定义方法.看了之后,想着能不能给对象也定义方法呢?. 下面的代码可以实现给函数定义方法: //Function method Function.prototy ...

  4. Python笔记之字典循环

    Python笔记之字典循环   1.问题 Python是一门比较好入门的编程语言,但是入门简单,当然坑也是有的,今天就来介绍一个我遇到的坑吧,也是很简单的一个,就是当时脑子有点转不过弯来了. 先看代码 ...

  5. 社区发现SLPA算法

    社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏. 设图G=G(V,E),所谓社区发现是指在图G中确定nc(>=1)个社区C={C1,C2,..., ...

  6. jquery json实现面向对象 百度十二星座

    效果: 源码: index.html <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  7. 判断IE浏览器的版本号

    function IEVersion() { var userAgent = navigator.userAgent; //取得浏览器的userAgent字符串 var isIE = userAgen ...

  8. 2018南京网络赛 - Skr 回文树

    题意:求本质不同的回文串(大整数)的数字和 由回文树的性质可知贡献只在首次进入某个新节点时产生 那么只需由pos和len算出距离把左边右边删掉再算好base重复\(O(n)\)次即可 位移那段写的略微 ...

  9. 蓝桥杯-学霸的迷宫(BFS+记录操作)

     算法提高 学霸的迷宫   时间限制:1.0s   内存限制:256.0MB      问题描述 学霸抢走了大家的作业,班长为了帮同学们找回作业,决定去找学霸决斗.但学霸为了不要别人打扰,住在一个城堡 ...

  10. 认识CSS中标题引入icon图标

    前端之HTML,CSS(十一) icon图标 icon图标的使用 获取网站的中标题icon图标,以京东为例:在域名后添加/favicon.ico Enter打开 鼠标右键,图标另存为下载icon图标, ...