题目描述

Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。

Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has length L_i (1 <= L_i <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has C_i (0 <= C_i <= 1,000) cows living in it.

每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。

When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is C_i*20). Help Bessie choose the most convenient location for the Great Cow Gathering.

在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。

Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.

1 3 4 5

@--1--@--3--@--3--@[2]

[1] |

2 | @[1] 2 Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location:

Gather ----- Inconvenience ------

Location B1 B2 B3 B4 B5 Total

1 0 3 0 0 14 17

2 3 0 0 0 16 19

3 1 2 0 0 12 15

4 4 5 0 0 6 15

5 7 8 0 0 0 15

If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:

Barn 1 0 -- no travel time there!

Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3 Barn 3 0 -- no cows there!

Barn 4 0 -- no cows there!

Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14 So the total inconvenience is 17.

The best possible convenience is 15, achievable at by holding the Gathering at barns 3, 4, or 5.

输入输出格式

输入格式:

* Line 1: A single integer: N

* Lines 2..N+1: Line i+1 contains a single integer: C_i

* Lines N+2..2*N: Line i+N+1 contains three integers: A_i, B_i, and L_i

第一行:一个整数 N 。

第二到 N+1 行:第 i+1 行有一个整数 C_i

第 N+2 行到 2*N 行:第 i+N+1 行为 3 个整数:A_i,B_i 和 L_i。

输出格式:

* Line 1: The minimum inconvenience possible

第一行:一个值,表示最小的不方便值。

输入输出样例

输入样例#1: 复制

5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3

可以叫ex会议,加上边权点权开long long罢了

(详情见P1395 会议

#include<iostream>
#include<stdio.h> using namespace std; int i,m,n,g,h,k,a[1000001],head[1000001],ver[1000001],nex[1000001],cnt,c[1000001],edge[10000001];
long long size[1000001],ste[1000001],ans=2147483647000000,p,deep[1000001],stp[1000001];
void add(int x,int y,int z)
{
cnt+=1;
ver[cnt]=y;
nex[cnt]=head[x];
head[x]=cnt;
edge[cnt]=z;
} void dfs1(int x,int f)
{
size[x]=c[x];
for(int i=head[x];i;i=nex[i])
{
int t=ver[i];
if(t==f) continue;
deep[t]=deep[x]+edge[i];
dfs1(t,x);
ste[x]+=ste[t]+size[t]*edge[i];
size[x]+=size[t];
}
} void dfs2(int x,int f)
{
for(int i=head[x];i;i=nex[i])
{
int t=ver[i];
if(t==f) continue;
stp[t]=stp[x]+size[1]*edge[i]-2*size[t]*edge[i];
ans=min(stp[t],ans);
dfs2(t,x);
}
} int main()
{
scanf("%d",&n);
for(i=1;i<=n;i++) scanf("%lld",&c[i]);
for(i=1;i<n;i++)
{
scanf("%d%d%d",&g,&h,&k);
add(g,h,k);
add(h,g,k);
}
dfs1(1,0);
stp[1]=ans=ste[1];
dfs2(1,0);
printf("%lld",ans);
}

P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…的更多相关文章

  1. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  2. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  3. [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...

  4. LUOGU P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    传送门 解题思路 首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1 ...

  5. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  6. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…【树形dp】By cellur925

    题目传送门 首先这道题是在树上进行的,然后求最小的不方便程度,比较符合dp的性质,那么我们就可以搞一搞树形dp. 设计状态:f[i]表示以i作为聚集地的最小不方便程度.那么我们还需要各点间的距离,但是 ...

  7. [USACO10MAR]伟大的奶牛聚集Great Cow Gat… ($dfs$,树的遍历)

    题目链接 Solution 辣鸡题...因为一个函数名看了我贼久. 思路很简单,可以先随便指定一个根,然后考虑换根的变化. 每一次把根从 \(x\) 换成 \(x\) 的一个子节点 \(y\),记录一 ...

  8. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. P2986 [USACO10MAR]伟大的奶牛聚集(思维,dp)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

随机推荐

  1. 安装node.js webkit环境[一]

    1. 安装node,设置代理npm config set registry https://registry.npm.taobao.org[cmd运行]2. 安装grunt-cli: npm inst ...

  2. [编程] C语言循环结构计算π的值

    公式: 分析:首先,系数为正数的项的分母是4n-3(n为正数项的项数),为负数的项的分母为4n-1(n为负数项的项数),即分母的变化规律是1.3.5.7...的奇数数列,则第n项的分母为2n-1,第1 ...

  3. block中self关键字的使用-防止self 被retain一次

    在代码块中使用对象的成员时(成员变量是属性strong,MRC估计是retain时效果一样,使用方法时也一样): 警告: capturing self strongly in this block i ...

  4. Java基础之java的四大特性

    上篇文章说了jdk的安装和java环境的配置,这篇文章主要说下java的特性. 首相说下,编程语言分为面向过程和面向对象,而java就是一种面向对象的编程语言. 什么是面向过程编程呢?就是一流程为单位 ...

  5. tcp程序设计--客户端获取服务器输入输出流

    tcp程序设计--客户端获取服务器输入输出流 思路: 第一步:实例化一个ServerSocket对象(服务器套接字),用来等待网络上的请求(也就是等待来连接的套接字) 第二步:调用accept()方法 ...

  6. css3+javascript实现翻页幻灯片

    先上效果图 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <tit ...

  7. Function Object in C++

    Function object is very userful to use member function or non-member function as callback mechanism, ...

  8. Oracle 11g 管理工具及SQL Deverloper 的使用教程

    Oracle 管理工具及SQL Deverloper 的使用教程 默认的网站的管理工具 网址格式:https://机器名:1158/em 默认:https://localhost:1158/em 机器 ...

  9. 在小程序中修改上一个页面里data中的数据调用上一个页面的方法

    //获取已经打开的页面的数组 var pages = getCurrentPages(); //获取上一个页面的所有的方法和data中的数据  var lastpage = pages[pages.l ...

  10. Software Testing Techniques Homework 1

    I have met some errors in recent years, one of them which impress me most. It happend when I try to ...