【LGP2045】方格取数加强版
还纠结了一下是费用流还是最小割
最终还是决定让最小割去死吧
我们的问题就是让一个点的点权只被计算一次
考虑拆点
将所有点拆成入点和出点,入点向出点连流量为\(1\)的边
每一个出点往下连能到达的点,向入点连费用为该点点权容量为\(0\)的边,向出点连费用为\(0\)容量为\(k-1\)的边
这样我们就能保证一个点的点权只被计算一次了
代码
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=5005;
const int inf=99999999;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt,w,f;}e[maxn*100];
const int dx[]={0,1};
const int dy[]={1,0};
std::queue<int> q;
int n,num=1,S,T,m,a[51][51],out[51][51],in[51][51];
int head[maxn],vis[maxn],d[maxn];
inline void C(int x,int y,int w,int f) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;
e[num].w=w;e[num].f=f;
}
inline void add(int x,int y,int w,int f) {C(x,y,-1*w,f),C(y,x,w,0);}
inline int SPFA() {
for(re int i=S;i<=T;i++) vis[i]=0,d[i]=inf;
d[T]=0,q.push(T);
while(!q.empty()) {
int k=q.front();q.pop();vis[k]=0;
for(re int i=head[k];i;i=e[i].nxt)
if(e[i^1].f&&d[e[i].v]>d[k]+e[i^1].w) {
d[e[i].v]=d[k]+e[i^1].w;
if(!vis[e[i].v]) q.push(e[i].v),vis[e[i].v]=0;
}
}
return d[S]<inf;
}
int dfs(int x,int now) {
if(x==T||!now) return now;
int flow=0,ff;vis[x]=1;
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].f&&!vis[e[i].v]&&d[e[i].v]==d[x]+e[i^1].w) {
ff=dfs(e[i].v,min(now,e[i].f));
if(ff<=0) continue;
flow+=ff,now-=ff,e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
int main() {
n=read(),m=read();
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++) a[i][j]=read();
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++) in[i][j]=++T,out[i][j]=++T;
++T;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++) add(in[i][j],out[i][j],0,1);
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++)
for(re int k=0;k<2;k++) {
int x=i+dx[k],y=j+dy[k];
if(x<1||y<1||x>n||y>n) continue;
add(out[i][j],in[x][y],a[x][y],1);
add(out[i][j],out[x][y],0,inf);
}
int ans=0;
add(S,in[1][1],a[1][1],1);add(S,out[1][1],0,m-1);
add(out[n][n],T,0,m);
while(SPFA()) {
vis[T]=1;
while(vis[T]) {
for(re int i=S;i<=T;i++) vis[i]=0;
ans-=dfs(S,inf)*d[S];
}
}
printf("%d\n",ans);
return 0;
}
【LGP2045】方格取数加强版的更多相关文章
- P2045 方格取数加强版
P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...
- [luogu_P2045]方格取数加强版
[luogu_P2045]方格取数加强版 试题描述 给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1 ...
- Luogu2045 方格取数加强版
题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变 ...
- Luogu2045 方格取数加强版(K取方格数) 费用流
题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...
- 洛谷 P2045 方格取数加强版【费用流】
题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...
- P2045 方格取数加强版 最大费用最大流
$ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...
- poj 3422 洛谷P2045 K取方格数(方格取数加强版)
Description: 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来 ...
- [洛谷P2045]方格取数加强版
题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...
- 洛谷 - P2045 - 方格取数加强版 - 费用流
原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...
随机推荐
- Spring.Net---3、IoC/DI深入理解
------------------------------------------------------------------------ 理解IoC/DI 1.控制反转 --> 谁控制谁 ...
- Tomcat配置连接c3p0连接池
一.Tomcat配置JNDI资源 JNDI(Java Naming and Directory Interface),Java 命名和目录接口. JNDI的作用就是:在服务器上配置资源,然后通过统一的 ...
- Java集合 之Map(HashMap、Hashtable 、TreeMap、WeakHashMap )理解(new)
HashMap 说明: 在详细介绍HashMap的代码之前,我们需要了解:HashMap就是一个散列表,它是通过“拉链法”解决哈希冲突的.还需要再补充说明的一点是影响HashMap性能的有两个参数:初 ...
- 一步一步实现web程序信息管理系统之三----登陆业务逻辑实现(验证码功能+参数获取)
本篇紧接着上一篇文章[一步一步实现web程序信息管理系统之二----后台框架实现跳转登陆页面] 验证码功能 一般验证码功能实现方式为,前端界面访问一个url请求,后端服务代码生成一个图片流返回至浏览器 ...
- csharp:FlowLayoutPanel
/// <summary> /// 集合添加的控件 /// 涂聚文20150339 /// </summary> public void AddNewTextBox() { P ...
- 使用javascript调用android代码
1.使用webview对象的addJavascriptInterface方法 2.addJavascriptInterface方法有两个参数,第一个参数就是我们一般会实现一个自己的类,类里面提供我们要 ...
- Java设计模式—状态模式
状态模式又是一个比较难的设计模式 定义如下: 当一个对象内在状态改变时允许其改变行为,这个对象看起来像改变了其类. 个人理解:通俗的讲,状态模式就是状态的改变引起了行为的改变,但是,我们只能看到行为的 ...
- C/C++内存管理详解 ZZ
内存管理是C++最令人切齿痛恨的问题,也是C++最有争议的问题,C++高手从中获得了更好的性能,更大的自由,C++菜鸟的收获则是一遍一遍的 检查代码和对C++的痛恨,但内存管理在C++中无处不在,内存 ...
- NexusFile(文件管理器)
NexusFile是一款来自于韩国的文件管理器,类似于TotalCommander,拥有两个并排的文件夹窗口. NexusFile软件的特性如下: 基本功能:复制/移动, 复制/剪切/粘贴, 删除/擦 ...
- jquery遍历之children()与find()的区别
hildren(selector) 方法是返回匹配元素集合中每个元素的所有子元素(仅儿子辈).参数可选,添加参数表示通过选择器进行过滤,对元素进行筛选. .find(selector)方法是返回匹配元 ...