【BZOJ3437】小P的牧场

Description

背景

小P是个特么喜欢玩MC的孩纸。。。

描述

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2 4 2 4
3 1 4 1

Sample Output

9

样例解释

选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。

数据范围与约定

对于100%的数据,1<=n<=1000000,0<ai,bi<=10000

题解:看出了斜率优化就列方程吧

f[i]=min(f[j]+Σb[k]*(i-k)+a[i]) (1≤j<i,j<k<i)

然后我们将Σ拆开,变成i*Σb[k]+Σb[k]*k,这个可以用前缀和维护

设sb是b[k]的前缀和,sk是b[k]*k的前缀和,再得到方程

f[i]=f[j]+i*(sb[i-1]-sb[j])-sk[i-1]+sk[j]+a[i]

在整理一下就行了

#include <cstdio>
#include <iostream>
#include <cstring>
#define y(_) (f[_]+sk[_])
#define x(_) sb[_]
using namespace std;
const int maxn=1000010;
int n,h,t;
long long a[maxn],b[maxn],sb[maxn],sk[maxn],q[maxn],f[maxn];
int main()
{
scanf("%d",&n);
int i;
for(i=1;i<=n;i++) scanf("%lld",&a[i]);
for(i=1;i<=n;i++)
{
scanf("%lld",&b[i]);
sb[i]=sb[i-1]+b[i];
sk[i]=sk[i-1]+b[i]*i;
}
h=t=1;
for(i=1;i<=n;i++)
{
while(h<t&&y(q[h+1])-y(q[h])<=i*(x(q[h+1])-x(q[h]))) h++;
f[i]=f[q[h]]+i*(sb[i-1]-sb[q[h]])-sk[i-1]+sk[q[h]]+a[i];
while(h<t&&(y(q[t])-y(q[t-1]))*(x(i)-x(q[t]))>=(y(i)-y(q[t]))*(x(q[t])-x(q[t-1]))) t--;
q[++t]=i;
}
printf("%lld",f[n]);
return 0;
}

【BZOJ3437】小P的牧场 斜率优化的更多相关文章

  1. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  2. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  3. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  4. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  5. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  6. bzoj3427小P的牧场(斜率优化dp)

    小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...

  7. bzoj3437小P的牧场

    bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...

  8. BZOJ3437 小P的牧场 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...

  9. bzoj3437 小P的牧场(斜率优化dp)

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2025  Solved: 1110[Submit][Status][Discu ...

随机推荐

  1. eclipse新建python项Project interpreter not specified

    安装好pydev后新建python项目时提示”Project interpreter not specified“的错误,这是因为没有导入python开发环境所致 解决方法如下:1.找到eclipse ...

  2. Python RGB 和HSV颜色相互转换

    转自:http://outofmemory.cn/code-snippet/1002/Python-RGB-HSV-color-together-switch Python RGB 和HSV颜色相互转 ...

  3. MFC 窗体注册 WNDCLASS

    //初始化 //初始化包括窗口类的定义.注册.创建窗口实例和显示窗口四部分 { HWND hwnd; MSG Msg; WNDCLASS wndclass; char lpszClassName[]= ...

  4. 下列没有直接采用XML技术的是( )

    A. UDDI B. SOAP C. AJAX D.DCOM 解答:D DCOM(分布式组件对象模型,分布式组件对象模式)是一系列微软的概念和程序接口,利用这个接口,客户端程序对象能够请求来自网络中另 ...

  5. e551. 精简的Applet

    Every applet must subclass Applet. import java.applet.*; import java.awt.*; public class BasicApplet ...

  6. mpeg压缩输入格式---打包模式和平面模式

    版本 v1.0,存在内存问题在 void v4l2_process_image(struct buffer buf)中对 v4l2 采集来的一帧进行处理,存在 struct buffer buf 中b ...

  7. 【Java集合的详细研究7】Set和List 的关系与区别

    两个接口都是继承自Collection. List (inteface) 次序是List 的最重要特点,它确保维护元素特定的顺序. --ArrayList 允许对元素快速随机访问. --LinkedL ...

  8. php如何定时执行任务

    PHP的实现决定了它没有Java和.Net这种AppServer的概念, 而http协议是一个无状态的协议, php只能被用户触发, 被调用, 调用后会自动退出内存, 没有常驻内存, 就没有办法准确的 ...

  9. SQL Server 删除数据库所有表和所有存储过程

    场景: SQL Server中,需要删除所有表或所有存储过程时,手动的方式只能逐个进行删除,耗个人时间,所以想弄个语句来实现这样的需求.   如果由于外键约束删除table失败,则先删除所有约束: - ...

  10. 【Latex】数学公式排版

    http://www.cnblogs.com/houkai/p/3399646.html 常用latex数学符号表 https://zh.wikipedia.org/wiki/Help:%E6%95% ...