add by zhj: 没找到原文。可以按多个维度进行排序,而且可以指定他们的排序方向,如果维度都是数字,排序比较容易,用+/-号就可以

指定排序方向。否则,就调用多次sorted进行排序了,而且要按维度的反向顺序来调用,比如按a, b, c三个维度来排序,那要先对c执行

sorted(),然后是b,最后是a。因为sorted()排序是稳定的,这样可以保证最终结果是按a, b, c三个维度来排序的。

Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。

1)排序基础

简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。

复制代码代码如下:
>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]

你也可以使用list.sort()方法来排序,此时list本身将被修改。通常此方法不如sorted()方便,但是如果你不需要保留原来的list,此方法将更有效。

复制代码代码如下:
>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

另一个不同就是list.sort()方法仅被定义在list中,相反地sorted()方法对所有的可迭代序列都有效。

复制代码代码如下:
>>> 
sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]

2)key参数/函数

从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:

复制代码代码如下:
>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较。这个技术是快速的因为key指定的函数将准确地对每个元素调用。

更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:

复制代码代码如下:
>>> student_tuples = [
        ('john', 'A', 15),
        ('jane', 'B', 12),
        ('dave', 'B', 10),
]
>>> sorted(student_tuples, key=lambda student: student[2])   # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

同样的技术对拥有命名属性的复杂对象也适用,例如:

复制代码代码如下:
>>> class Student:
        def __init__(self, name, grade, age):
                self.name = name
                self.grade = grade
                self.age = age
        def __repr__(self):
                return repr((self.name, self.grade, self.age))
>>> student_objects = [
        Student('john', 'A', 15),
        Student('jane', 'B', 12),
        Student('dave', 'B', 10),
]
>>> sorted(student_objects, key=lambda student: student.age)   # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

3)Operator 模块函数

上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:

复制代码代码如下:
>>> from operator import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

operator模块还允许多级的排序,例如,先以grade,然后再以age来排序:

复制代码代码如下:
>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

4)升序和降序

list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:

复制代码代码如下:
>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

5)排序的稳定性和复杂排序

从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。

复制代码代码如下:
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

注意在排序后'blue'的顺序被保持了,即'blue', 1在'blue', 2的前面。
 
更复杂地你可以构建多个步骤来进行更复杂的排序,例如对student数据先以grade降序排列,然后再以age升序排列。

复制代码代码如下:
>>> s = sorted(student_objects, key=attrgetter('age'))     # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True)       # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

6)最老土的排序方法-DSU

我们称其为DSU(Decorate-Sort-Undecorate),原因为排序的过程需要下列三步:
第一:对原始的list进行装饰,使得新list的值可以用来控制排序;
第二:对装饰后的list排序;
第三:将装饰删除,将排序后的装饰list重新构建为原来类型的list;

例如,使用DSU方法来对student数据根据grade排序:
>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated]               # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
上面的比较能够工作,原因是tuples是可以用来比较,tuples间的比较首先比较tuples的第一个元素,如果第一个相同再比较第二个元素,以此类推。

并不是所有的情况下都需要在以上的tuples中包含索引,但是包含索引可以有以下好处:
第一:排序是稳定的,如果两个元素有相同的key,则他们的原始先后顺序保持不变;
第二:原始的元素不必用来做比较,因为tuples的第一和第二元素用来比较已经是足够了。

此方法被RandalL.在perl中广泛推广后,他的另一个名字为也被称为Schwartzian transform。

对大的list或list的元素计算起来太过复杂的情况下,在python2.4前,DSU很可能是最快的排序方法。但是在2.4之后,上面解释的key函数提供了类似的功能。

7)其他语言普遍使用的排序方法-cmp函数

在python2.4前,sorted()和list.sort()函数没有提供key参数,但是提供了cmp参数来让用户指定比较函数。此方法在其他语言中也普遍存在。

在python3.0中,cmp参数被彻底的移除了,从而简化和统一语言,减少了高级比较和__cmp__方法的冲突。

在python2.x中cmp参数指定的函数用来进行元素间的比较。此函数需要2个参数,然后返回负数表示小于,0表示等于,正数表示大于。例如:

复制代码代码如下:
>>> def numeric_compare(x, y):
        return x - y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
[1, 2, 3, 4, 5]

或者你可以反序排序:

复制代码代码如下:
>>> def reverse_numeric(x, y):
        return y - x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
[5, 4, 3, 2, 1]

当我们将现有的2.x的代码移植到3.x时,需要将cmp函数转化为key函数,以下的wrapper很有帮助:

复制代码代码如下:
def cmp_to_key(mycmp):
    'Convert a cmp= function into a key= function'
    class K(object):
        def __init__(self, obj, *args):
            self.obj = obj
        def __lt__(self, other):
            return mycmp(self.obj, other.obj) < 0
        def __gt__(self, other):
            return mycmp(self.obj, other.obj) > 0
        def __eq__(self, other):
            return mycmp(self.obj, other.obj) == 0
        def __le__(self, other):
            return mycmp(self.obj, other.obj) <= 0
        def __ge__(self, other):
            return mycmp(self.obj, other.obj) >= 0
        def __ne__(self, other):
            return mycmp(self.obj, other.obj) != 0
    return K

当需要将cmp转化为key时,只需要:

复制代码代码如下:
>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]

从python2.7,cmp_to_key()函数被增加到了functools模块中。

8)其他注意事项

* 对需要进行区域相关的排序时,可以使用locale.strxfrm()作为key函数,或者使用local.strcoll()作为cmp函数。

* reverse参数任然保持了排序的稳定性,有趣的时,同样的效果可以使用reversed()函数两次来实现:

复制代码代码如下:
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))

* 其实排序在内部是调用元素的__cmp__来进行的,所以我们可以为元素类型增加__cmp__方法使得元素可比较,例如:

复制代码代码如下:
>>> Student.__lt__ = lambda self, other: self.age < other.age
>>> sorted(student_objects)
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

* key函数不仅可以访问需要排序元素的内部数据,还可以访问外部的资源,例如,如果学生的成绩是存储在dictionary中的,则可以使用此dictionary来对学生名字的list排序,如下:

复制代码代码如下:
>>> students = ['dave', 'john', 'jane']
>>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
>>> sorted(students, key=newgrades.__getitem__)
['jane', 'dave', 'john']

*当你需要在处理数据的同时进行排序的话,sort(),sorted()或bisect.insort()不是最好的方法。在这种情况下,可以使用heap,red-black tree或treap。

python sort、sorted高级排序技巧(转)的更多相关文章

  1. 【Python】 sort、sorted高级排序技巧

    文章转载自:脚本之家 这篇文章主要介绍了python sort.sorted高级排序技巧,本文讲解了基础排序.升序和降序.排序的稳定性和复杂排序.cmp函数排序法等内容,需要的朋友可以参考下 Pyth ...

  2. 【转载】 python sort、sorted高级排序技巧

    这篇文章主要介绍了python sort.sorted高级排序技巧,本文讲解了基础排序.升序和降序.排序的稳定性和复杂排序.cmp函数排序法等内容,需要的朋友可以参考下 Python list内置so ...

  3. python sort、sorted高级排序技巧

    文章转载自:脚本之家 Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列. 1)排序基础 简单的升序排序是非常容易的 ...

  4. Python: sort,sorted,OrderedDict的用法

    Python: sort,sorted,OrderedDict的用法 from http://stqdd.com/archives/427 by 莫亚菜 python对容器内数据的排序有两种,一种是容 ...

  5. python sort() sorted() 与argsort()函数的区别

    1.python的内建排序函数有 sort.sorted两个 sort函数只定义在list中,sorted函数对于所有的可迭代序列都可以定义. for example: ls = list([5, 2 ...

  6. sort、sorted高级排序-Python3.7 And 算法<七>

    1.sort(*, key=None, reverse=False) sort()接受两个参数,这两个参数只能通过关键字(关键字参数)传递. 参数key:带一个参数的函数(排序时,会依次传入列表的每一 ...

  7. python--sort()和sorted()高级排序

    1.list中的sort()方法: def sort(self, key=None, reverse=False): # real signature unknown; restored from _ ...

  8. python 的一些高级编程技巧

    正文: 本文展示一些高级的Python设计结构和它们的使用方法.在日常工作中,你可以根据需要选择合适的数据结构,例如对快速查找性的要求.对数据一致性的要求或是对索引的要求等,同时也可以将各种数据结构合 ...

  9. python sort() sorted()的区别

    sorted不保存 sort保存:

随机推荐

  1. UGUI之Canvas Group

    可以通过Canvas Group影响该组UI元素的部分性质,而不需要费力的对该组UI下的每个元素逐个调整.Canvas Group是同时作用于该组UI下的全部元素. 参数:Alpha:该组UI元素的透 ...

  2. 如何Request客户端的传值的Data

    我们在做B/S的项目,客户端向服务端传值的时候,一般都是request接受. Request常用三个接受方式为:Request.QueryString,Request.Form,Request.Par ...

  3. Extjs学习笔记--(五,事件)

    Extjs中事件包括浏览器事件(单机按钮,鼠标移动等触发)和内部事件(组件之间的联动) 绑定浏览器事件的过程Ext.EventManager 要为元素绑定事件,通常会使用EventManager.on ...

  4. Android代码调试报错

    最近出现老代码不能运行的问题 Conversion to Dalvik format failed: Unable to execute dex: java.nio.BufferOverflowExc ...

  5. laravel 控制器构造方法注入request对象

    IndexController: <?php namespace App\Http\Controllers; use Illuminate\Http\Request; use App\Http\ ...

  6. Spring装配Bean的过程补充

    对上一篇的<Spring装配Bean的过程>的过程说一下,不然真产生了误区. 误区在哪里呢?那就是spring bean的作用域问题. 说哈常用的两种作用域:默认是scope = sing ...

  7. sql数据库中如何根据身份证号判断性别

    身份证号有15位和18位的..在sql中该如何判断? I_sex ,) ,) then '男' else '女' END

  8. android基础组件---->Checkboxe的使用

    由于使用比较简单,这篇博客涵盖Checkboxes和Radio Buttons和Toggle Buttons.好了我们开始今天的学习.我被世俗隐瞒,转身又被自己撞倒.从莫须有的罪名起步,行色简单,心术 ...

  9. Docker源码分析(四):Docker Daemon之NewDaemon实现

    1. 前言 Docker的生态系统日趋完善,开发者群体也在日趋庞大,这让业界对Docker持续抱有极其乐观的态度.如今,对于广大开发者而言,使用Docker这项技术已然不是门槛,享受Docker带来的 ...

  10. window自带字体

    一.在默认情况下, Windows 默认提供下列字体: Windows 95/98/98SE 宋体.黑体.楷体_GB2312.仿宋_GB2312 Windows XP/2000/2003/ME/NT ...