操作系统:Red Hat Enterprise Linux Server release 6.2 (Santiago)

hadoop2.7.1

三台redhat linux主机,ip分别为10.204.16.57-59,59为master,57、58为slave,

jdk版本为jdk-7u79-linux-x64.tar

一、环境准备

1、配置主机域名

设置主机名

配置hosts文件:vim /etc/hosts

在文件末添加内容如下:
10.204.16.59 master
10.204.16.58 slave8
10.204.16.57 slave7

2、设置ssh无密登录

1)在/home/bob下新建.ssh文件夹:mkdir .ssh

2)修改.ssh权限(关闭组和其他权限,否则ssh还需输密码):chmod 700 .ssh

3)生成无密公钥和私钥:ssh-keygen -t rsa -P ''

  让选择保存密钥的文件路径,回车直接用默认即可。

  命令与结果如下:

  

[bob@localhost ~]$ ssh-keygen -t rsa -P ''
Generating public/private rsa key pair.
Enter file in which to save the key (/home/bob/.ssh/id_rsa):
Your identification has been saved in /home/bob/.ssh/id_rsa.
Your public key has been saved in /home/bob/.ssh/id_rsa.pub.
The key fingerprint is:
:f1:5f:::4c::fa:a7::4e::a5:c0:4f: bob@localhost.localdomain
The key's randomart image is:
+--[ RSA ]----+
| . ..=*++|
| o E++oo|
| . . o+ o|
| . . ..o.|
| S . =|
| . =.|
| o .|
| . |
| |
+-----------------+

4)用root用户修改ssh配置,启用RSA认证:vim /etc/ssh/sshd_config,去掉以下三项行首的‘#’,编辑后内容如下:

RSAAuthentication yes # 启用 RSA 认证

PubkeyAuthentication yes # 启用公钥私钥配对认证方式

AuthorizedKeysFile .ssh/authorized_keys # 公钥文件路径

5)导入公钥至认证文件:cat id_rsa.pub >> authorized_keys

6)设置认证文件权限(关闭组和其他权限,否则ssh还需输密码):chmod 600 authorized_keys

7)重启sshd服务: service sshd restart

8)测试本机ssh无密登录是否成功:ssh bob@master

  第一次会有确认提示,输入yes即可。

  Last login: Tue Aug 25 14:43:51 2015 from 10.204.105.165
  [bob@master ~]$ exit
  logout

9)将master的/home/bob/.ssh文件夹传送至slave7、slave8,分别进行设置(生成密钥,将公钥追加至authorized_keys文件)。

  传送命令: scp -r .ssh bob@slave7:~

  测试master至slave7、slave8的ssh无密登录(bob用户),成功则进行后续步骤,否则检查以上步骤。

3、安装jdk

解压安装包:tar -xzvf jdk-7u79-linux-x64.tar.gz,解压文件路径/usr/bob/jdk1.7.0_79

root用户登录,设置环境变量:vim /etc/profile

结尾加入以下:

#set java and hadoop envs
export JAVA_HOME=/usr/bob/jdk1.7.0_79
export PATH=$JAVA_HOME/bin:$PATH:.
export CLASSPATH=$JAVA_HOME/jre/lib:.
export HADOOP_HOME=/usr/bob/hadoop-2.7.1
export PATH=$PATH:$HADOOP_HOME/bin

验证jdk是否按照成功:运行java或javac,成功则继续,否则检查以上步骤。

二、安装和设置hadoop

1)解压hadoop-2.7.1.tar.gz文件:tar -xzvf hadoop-2.7.1.tar.gz

解压后文件为hadoop-2.7.1,查看文件内容如下:

[bob@master bob]$ ls -la hadoop-2.7.1
total 60
drwxr-x---  9 bob bob  4096 Jun 29 14:15 .
drwxr-x---. 5 bob bob  4096 Aug 25 15:15 ..
drwxr-x---  2 bob bob  4096 Jun 29 14:15 bin
drwxr-x---  3 bob bob  4096 Jun 29 14:15 etc
drwxr-x---  2 bob bob  4096 Jun 29 14:15 include
drwxr-x---  3 bob bob  4096 Jun 29 14:15 lib
drwxr-x---  2 bob bob  4096 Jun 29 14:15 libexec
-rw-r-----  1 bob bob 15429 Jun 29 14:15 LICENSE.txt
-rw-r-----  1 bob bob   101 Jun 29 14:15 NOTICE.txt
-rw-r-----  1 bob bob  1366 Jun 29 14:15 README.txt
drwxr-x---  2 bob bob  4096 Jun 29 14:15 sbin
drwxr-x---  4 bob bob  4096 Jun 29 14:15 share

2)配置参数:涉及以下四个文件

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration> <property>
<name>fs.defaultFS</name>
<value>hdfs://master:9000</value>
</property> <property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property> <property>
<name>hadoop.tmp.dir</name>
<value>/usr/bob/hadoop-2.7.1/tmp</value>
</property> </configuration>

hdfs-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/bob/hadoop_space/hdfs/name</value>
</property> <property>
<name>dfs.datanode.data.dir</name>
<value>/home/bob/hadoop_space/hdfs/data</value>
</property> <property>
<name>dfs.replication</name>
<value>2</value>
</property> <property>
<name>dfs.blocksize</name>
<value>268435456</value>
</property> <property>
<name>dfs.namenode.handler.count</name>
<value>100</value>
</property> <property>
<name>dfs.namenode.secondary.http-address</name>
<value>master:50090</value>
</property> <property>
<name>dfs.namenode.secondary.https-address</name>
<value>master:50091</value>
</property> </configuration>

mapred-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration> <property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property> <property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property> <property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property> </configuration>

yarn-site.xml

<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration> <!-- Site specific YARN configuration properties -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>10.204.16.59</value>
</property> <property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property> <property>
<name>yarn.resourcemanager.address</name>
<value>10.204.16.59:8032</value>
</property> <property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>
</property> <property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8031</value>
</property> <property>
<name>yarn.resourcemanager.admin.address</name>
<value>master:8033</value>
</property> <property>
<name>yarn.resourcemanager.webapp.address</name>
<value>master:8088</value>
</property> </configuration>

slaves(填写slave的主机名或ip,仅需要在master上设置),内容如下:

  slave7

  slave8

三、初始化和启动

1、以bob用户登录格式化hdfs文件系统:hdfs namenode -format

运行格式化成功,节选输出最后三行如下:

  15/08/25 18:09:54 INFO util.ExitUtil: Exiting with status 0
  15/08/25 18:09:54 INFO namenode.NameNode: SHUTDOWN_MSG:
  /************************************************************
  SHUTDOWN_MSG: Shutting down NameNode at master/10.204.16.59
  ************************************************************/

2、启动hdfs:

以bob用户登录,启动hdfs集群:/usr/bob/hadoop-2.7.1/sbin/start-dfs.sh

输出如下:

15/08/25 19:00:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [master]
master: starting namenode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-namenode-master.out
slave8: starting datanode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-datanode-localhost.localdomain.out
slave7: starting datanode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-datanode-slave7.out
Starting secondary namenodes [master]
master: starting secondarynamenode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-secondarynamenode-master.out
15/08/25 19:00:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

3、查看hdfs集群各主机的进程:jps

master上查看进程如下:
[bob@master sbin]$ jps
输出如下:

  25551 Jps
  25129 NameNode
  25418 SecondaryNameNode

slave(slave7、slave8相同)上查看进程:

[bob@slave7 .ssh]$ jps
输出如下:

  18468 DataNode
  18560 Jps

4、启动yarn:

[bob@master sbin]$ ./start-yarn.sh
 输出如下:

  starting yarn daemons
  starting resourcemanager, logging to /usr/bob/hadoop-2.7.1/logs/yarn-bob-resourcemanager-master.out
  slave8: starting nodemanager, logging to /usr/bob/hadoop-2.7.1/logs/yarn-bob-nodemanager-localhost.localdomain.out
  slave7: starting nodemanager, logging to /usr/bob/hadoop-2.7.1/logs/yarn-bob-nodemanager-slave7.out

5、查看yarn启动后集群进程状态:

master上查看进程如下:

[bob@master sbin]$ jps
输出如下:

  25129 NameNode
  25633 ResourceManager
  25418 SecondaryNameNode
  25904 Jps

slave(slave7、slave8相同)上查看进程如下:

[bob@slave7 .ssh]$ jps
输出如下:

  18468 DataNode
  18619 NodeManager
  18751 Jps

四、运行范例

1、创建hdfs文件

查看hdfs文件列表告警:

[bob@master sbin]$ hdfs dfs -ls /
15/08/25 19:23:13 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

查看apache官网,NativeLibraryChecker is a tool to check whether native libraries are loaded correctly. You can launch NativeLibraryChecker as follows:

$ hadoop checknative -a
   14/12/06 01:30:45 WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version
   14/12/06 01:30:45 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
   Native library checking:
   hadoop: true /home/ozawa/hadoop/lib/native/libhadoop.so.1.0.0
   zlib:   true /lib/x86_64-linux-gnu/libz.so.1
   snappy: true /usr/lib/libsnappy.so.1
   lz4:    true revision:99
   bzip2:  false

但是我这里运行结果全是false:

[bob@master native]$ hadoop checknative -a
15/08/25 19:40:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Native library checking:
hadoop:  false
zlib:    false
snappy:  false
lz4:     false
bzip2:   false
openssl: false
15/08/25 19:40:04 INFO util.ExitUtil: Exiting with status 1

继续找原因,难道必需要重新编译hadoop源码?

---发现不影响正常功能,不知道如何消除此警告,先继续往下走吧。

2、上传本地文件至hdfs

-创建input、output文件夹用于后续输入、输出数据

[bob@master hadoop]$ hdfs dfs -mkdir /input

[bob@master hadoop]$ hdfs dfs -mkdir /output

-查看hdfs /目录下的文件信息

[bob@master hadoop]$ hdfs dfs –ls /

输出:

Found 5 items
drwxr-xr-x   - bob supergroup          0 2015-08-31 20:23 /input
drwxr-xr-x   - bob supergroup          0 2015-09-01 21:29 /output
drwxr-xr-x   - bob supergroup          0 2015-08-31 18:03 /test1
drwx------   - bob supergroup          0 2015-08-31 19:23 /tmp
drwxr-xr-x   - bob supergroup          0 2015-09-01 22:00 /user

-查看hdfs文件系统情况

[bob@master hadoop]$ hdfs dfsadmin -report

输出:
15/11/13 20:40:59 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Configured Capacity: 92229451776 (85.90 GB)
Present Capacity: 72146309120 (67.19 GB)
DFS Remaining: 71768203264 (66.84 GB)
DFS Used: 378105856 (360.59 MB)
DFS Used%: 0.52%
Under replicated blocks: 0
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0

-------------------------------------------------
Live datanodes (2):

Name: 10.204.16.58:50010 (slave8)
Hostname: slave8
Decommission Status : Normal
Configured Capacity: 46114725888 (42.95 GB)
DFS Used: 378073088 (360.56 MB)
Non DFS Used: 10757623808 (10.02 GB)
DFS Remaining: 34979028992 (32.58 GB)
DFS Used%: 0.82%
DFS Remaining%: 75.85%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Nov 13 20:41:00 CST 2015

Name: 10.204.16.57:50010 (slave7)
Hostname: slave7
Decommission Status : Normal
Configured Capacity: 46114725888 (42.95 GB)
DFS Used: 32768 (32 KB)
Non DFS Used: 9325518848 (8.69 GB)
DFS Remaining: 36789174272 (34.26 GB)
DFS Used%: 0.00%
DFS Remaining%: 79.78%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Nov 13 20:41:01 CST 2015

-创建wordcount文件夹hdfs dfs -mkdir /input/wordcount

-将本地/home/bob/study/下的所有txt文件上传到hdfs的/input/wordcount文件夹下

[bob@master hadoop]$ hdfs dfs -put /home/bob/study/*.txt  /input/wordcount

-查看上传后的文件清单:

[bob@master hadoop]$ hadoop dfs -ls /input/wordcount
-rw-r--r--   3 bob supergroup        100 2015-11-13 21:02 /input/wordcount/file1.txt
-rw-r--r--   3 bob supergroup        383 2015-11-13 21:03 /input/wordcount/file2.txt
-rw-r--r--   2 bob supergroup         73 2015-08-31 19:18 /input/wordcount/runHadoop.txt

3、运行自带的wordcount范例。

[bob@master hadoop]$ hadoop jar /usr/bob/hadoop-2.7.1/share/hadoop/mapreduce/hoop-mapreduce-examples-2.7.1.jar wordcount /input/wordcount/*.txt /output/wordcount
15/11/13 21:41:14 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/11/13 21:41:16 INFO client.RMProxy: Connecting to ResourceManager at /10.204.16.59:8032
15/11/13 21:41:17 INFO input.FileInputFormat: Total input paths to process : 3
15/11/13 21:41:17 INFO mapreduce.JobSubmitter: number of splits:3
15/11/13 21:41:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1441114883272_0008
15/11/13 21:41:18 INFO impl.YarnClientImpl: Submitted application application_1441114883272_0008
15/11/13 21:41:18 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1441114883272_0008/
15/11/13 21:41:18 INFO mapreduce.Job: Running job: job_1441114883272_0008
15/11/13 21:50:57 INFO mapreduce.Job: Job job_1441114883272_0008 running in uber mode : false
15/11/13 21:50:57 INFO mapreduce.Job:  map 0% reduce 0%
15/11/13 21:51:10 INFO mapreduce.Job:  map 100% reduce 0%
15/11/13 21:58:31 INFO mapreduce.Job: Task Id : attempt_1441114883272_0008_r_000000_0, Status : FAILED
Container launch failed for container_1441114883272_0008_01_000005 : java.net.NoRouteToHostException: No Route to Host from  slave8/10.204.16.58 to slave7:45758 failed on socket timeout exception: java.net.NoRouteToHostException: No route to host; For more details see:  http://wiki.apache.org/hadoop/NoRouteToHost
        at sun.reflect.GeneratedConstructorAccessor22.newInstance(Unknown Source)
        at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
        at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
        at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:792)
        at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:758)
        at org.apache.hadoop.ipc.Client.call(Client.java:1480)
        at org.apache.hadoop.ipc.Client.call(Client.java:1407)
        at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
        at com.sun.proxy.$Proxy36.startContainers(Unknown Source)
        at org.apache.hadoop.yarn.api.impl.pb.client.ContainerManagementProtocolPBClientImpl.startContainers(ContainerManagementProtocolPBClientImpl.java:96)
        at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
        at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
        at com.sun.proxy.$Proxy37.startContainers(Unknown Source)
        at org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImpl$Container.launch(ContainerLauncherImpl.java:151)
        at org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImpl$EventProcessor.run(ContainerLauncherImpl.java:375)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.NoRouteToHostException: No route to host
        at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
        at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
        at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
        at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
        at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
        at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:609)
        at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:707)
        at org.apache.hadoop.ipc.Client$Connection.access$2800(Client.java:370)
        at org.apache.hadoop.ipc.Client.getConnection(Client.java:1529)
        at org.apache.hadoop.ipc.Client.call(Client.java:1446)
        ... 15 more

15/11/13 21:58:40 INFO mapreduce.Job:  map 100% reduce 100%
15/11/13 21:58:41 INFO mapreduce.Job: Job job_1441114883272_0008 completed successfully
15/11/13 21:58:41 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=680
                FILE: Number of bytes written=462325
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=887
                HDFS: Number of bytes written=327
                HDFS: Number of read operations=12
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters
                Launched map tasks=3
                Launched reduce tasks=1
                Data-local map tasks=3
                Total time spent by all maps in occupied slots (ms)=30688
                Total time spent by all reduces in occupied slots (ms)=6346
                Total time spent by all map tasks (ms)=30688
                Total time spent by all reduce tasks (ms)=6346
                Total vcore-seconds taken by all map tasks=30688
                Total vcore-seconds taken by all reduce tasks=6346
                Total megabyte-seconds taken by all map tasks=31424512
                Total megabyte-seconds taken by all reduce tasks=6498304
        Map-Reduce Framework
                Map input records=13
                Map output records=52
                Map output bytes=752
                Map output materialized bytes=692
                Input split bytes=331
                Combine input records=52
                Combine output records=45
                Reduce input groups=25
                Reduce shuffle bytes=692
                Reduce input records=45
                Reduce output records=25
                Spilled Records=90
                Shuffled Maps =3
                Failed Shuffles=0
                Merged Map outputs=3
                GC time elapsed (ms)=524
                CPU time spent (ms)=5900
                Physical memory (bytes) snapshot=1006231552
                Virtual memory (bytes) snapshot=4822319104
                Total committed heap usage (bytes)=718798848
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters
                Bytes Read=556
        File Output Format Counters
                Bytes Written=327
运行过程中抛出异常,如下:

5/11/13 21:58:31 INFO mapreduce.Job: Task Id : attempt_1441114883272_0008_r_000000_0, Status : FAILED
Container
launch failed for container_1441114883272_0008_01_000005 :
java.net.NoRouteToHostException: No Route to Host from 
slave8/10.204.16.58 to slave7:45758 failed on socket timeout exception:
java.net.NoRouteToHostException: No route to host; For more details
see:  http://wiki.apache.org/hadoop/NoRouteToHost

在等待较长时间后,最终运行成功,报错的原因以后继续分析。

-运行成功后,在 /output/wordcount下自动生成两个文件:_SUCCESS、part-r-00000,可用hdfs命令查看:

[bob@master hadoop]$ hdfs dfs -ls /output/wordcount
15/11/13 22:31:59 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r--   2 bob supergroup          0 2015-11-13 21:58 /output/wordcount/_SUCCESS
-rw-r--r--   2 bob supergroup        327 2015-11-13 21:58 /output/wordcount/part-r-00000

-显示part-r-00000文件内容,命令及输出如下:

[bob@master hadoop]$ hdfs dfs -cat /output/wordcount/part-r-00000
15/11/13 22:34:07 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
/home/bob/study/hello.jar       1
/input/*.txt    2
/input/wordcount        1
/output/wordcount       3
/usr/bob/hadoop-2.7.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar2
day     2
example 2
first   2
hadoop  5
hello   2
i       2
in      2
is      2
it      2
jar     3
my      2
myself,come     2
nice    2
on.     2
succeed 2
wordcount       2
中国人  1
中国梦  2
学习    2
学校    2
-------------------------------------------------------------------------

ok,第一次完整搭建过程说完了,欢迎批评指正。

posted @ 2015-08-25 14:26 Bob.Guo

first updated @ 2015-11-13 20:29 Bob.Guo

hadoop2.7.1安装和部署的更多相关文章

  1. hadoop2.5.2 安装与部署

    主从机构 主:jobtracker 从:tasktracker 四个阶段 1. split 2. Mapper: key-value(对象) 3. shuffle a)  分区(partition,H ...

  2. hadoop2.5.2安装部署

    0x00 说明 此处已经省略基本配置步骤参考Hadoop1.0.3环境搭建流程,省略主要步骤有: 建立一般用户 关闭防火墙和SELinux 网络配置 0x01 配置master免密钥登录slave 生 ...

  3. Apache Hadoop2.x 边安装边入门

    完整PDF版本:<Apache Hadoop2.x边安装边入门> 目录 第一部分:Linux环境安装 第一步.配置Vmware NAT网络 一. Vmware网络模式介绍 二. NAT模式 ...

  4. Kafka的安装和部署及测试

    1.简介 大数据分析处理平台包括数据的接入,数据的存储,数据的处理,以及后面的展示或者应用.今天我们连说一下数据的接入,数据的接入目前比较普遍的是采用kafka将前面的数据通过消息的方式,以数据流的形 ...

  5. Hadoop第3周练习--Hadoop2.X编译安装和实验

    作业题目 位系统下进行本地编译的安装方式 选2 (1) 能否给web监控界面加上安全机制,怎样实现?抓图过程 (2)模拟namenode崩溃,例如将name目录的内容全部删除,然后通过secondar ...

  6. Hive安装与部署集成mysql

    前提条件: 1.一台配置好hadoop环境的虚拟机.hadoop环境搭建教程:稍后补充 2.存在hadoop账户.不存在的可以新建hadoop账户安装配置hadoop. 安装教程: 一.Mysql安装 ...

  7. CentOS6安装各种大数据软件 第十章:Spark集群安装和部署

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  8. Hue的安装与部署

    Hue的安装与部署 hadoop hue Hue 简介 Hue是一个开源的Apache Hadoop UI系统,最早是由Cloudera Desktop演化而来,由Cloudera贡献给开源社区,它是 ...

  9. hadoop2.4.1伪分布模式部署

    hadoop2.4.1伪分布模式部署 (承接上一篇hadoop2.4.1-src的编译安装继续配置:http://www.cnblogs.com/wrencai/p/3897438.html) 感谢: ...

随机推荐

  1. iOS背景音乐不自动播放

    iOS 内置浏览器safari不允许自动播放音乐.我们需要通过WeixinJSBridgeReady()函数实现自动触发 document.addEventListener("WeixinJ ...

  2. yyy loves Maths VII(状压DP)

    题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 一群同学在和yyy玩一个游戏 每次,他们会给yyy ...

  3. async之诗句慢慢出现

    <body> <ul class="oul"></ul> <script> let str = ["君不见,黄河之水天上来 ...

  4. Nginx 解决504 Error 最简单的方法

    <?php // Where am I ? set_time_limit(0); 就这个多,当然了,服务器还是务求稳妥,应当结合服务器和业务需求从配置上优化,才是正理.

  5. jquery.ajax的方法使用

    $.ajax({ type: 'post', url:"{:U('Admin/Shop')}", data:{id:id}, dataType: "json", ...

  6. numpy.random.shuffle()与numpy.random.permutation()的区别

    参考API:https://docs.scipy.org/doc/numpy/reference/routines.random.html 1. numpy.random.shuffle()   AP ...

  7. 利用python操作mrjob实例---wordcount

       网上利用java实现mr操作实例相对较多,现将python实现mr操作实例---Wordcount分享如下: 在操作前,需要作如下准备: 1.确保linux系统里安装有python3.5,pyt ...

  8. BurpSuite系列(一)----Proxy模块(代理模块)

    一.简介 Proxy代理模块作为BurpSuite的核心功能,拦截HTTP/S的代理服务器,作为一个在浏览器和目标应用程序之间的中间人,允许你拦截,查看,修改在两个方向上的原始数据流. Burp 代理 ...

  9. 【深度优先搜索】MZOJ_1344工作依赖

    这道题的读入非常毒瘤...恶心到我了 我痛苦地弄了很久,还是被卡住了我还真是▇了狗了.[传送门](特此声明:学校内部OJ,需登录) 题目描述(Description): 2008年,奥运会将在中国举行 ...

  10. java int 与 Integer之间的区别

    int与integer的区别从大的方面来说就是基本数据类型与其包装类的区别: int 是基本类型,直接存数值,而integer是对象,用一个引用指向这个对象 1.Java 中的数据类型分为基本数据类型 ...