hadoop2.7.1安装和部署
操作系统:Red Hat Enterprise Linux Server release 6.2 (Santiago)
hadoop2.7.1
三台redhat linux主机,ip分别为10.204.16.57-59,59为master,57、58为slave,
jdk版本为jdk-7u79-linux-x64.tar
一、环境准备
1、配置主机域名
设置主机名
配置hosts文件:vim /etc/hosts
在文件末添加内容如下:
10.204.16.59 master
10.204.16.58 slave8
10.204.16.57 slave7
2、设置ssh无密登录
1)在/home/bob下新建.ssh文件夹:mkdir .ssh
2)修改.ssh权限(关闭组和其他权限,否则ssh还需输密码):chmod 700 .ssh
3)生成无密公钥和私钥:ssh-keygen -t rsa -P ''
让选择保存密钥的文件路径,回车直接用默认即可。
命令与结果如下:
- [bob@localhost ~]$ ssh-keygen -t rsa -P ''
- Generating public/private rsa key pair.
- Enter file in which to save the key (/home/bob/.ssh/id_rsa):
- Your identification has been saved in /home/bob/.ssh/id_rsa.
- Your public key has been saved in /home/bob/.ssh/id_rsa.pub.
- The key fingerprint is:
- :f1:5f:::4c::fa:a7::4e::a5:c0:4f: bob@localhost.localdomain
- The key's randomart image is:
- +--[ RSA ]----+
- | . ..=*++|
- | o E++oo|
- | . . o+ o|
- | . . ..o.|
- | S . =|
- | . =.|
- | o .|
- | . |
- | |
- +-----------------+
4)用root用户修改ssh配置,启用RSA认证:vim /etc/ssh/sshd_config,去掉以下三项行首的‘#’,编辑后内容如下:
RSAAuthentication yes # 启用 RSA 认证
PubkeyAuthentication yes # 启用公钥私钥配对认证方式
AuthorizedKeysFile .ssh/authorized_keys # 公钥文件路径
5)导入公钥至认证文件:cat id_rsa.pub >> authorized_keys
6)设置认证文件权限(关闭组和其他权限,否则ssh还需输密码):chmod 600 authorized_keys
7)重启sshd服务: service sshd restart
8)测试本机ssh无密登录是否成功:ssh bob@master
第一次会有确认提示,输入yes即可。
Last login: Tue Aug 25 14:43:51 2015 from 10.204.105.165
[bob@master ~]$ exit
logout
9)将master的/home/bob/.ssh文件夹传送至slave7、slave8,分别进行设置(生成密钥,将公钥追加至authorized_keys文件)。
传送命令: scp -r .ssh bob@slave7:~
测试master至slave7、slave8的ssh无密登录(bob用户),成功则进行后续步骤,否则检查以上步骤。
3、安装jdk
解压安装包:tar -xzvf jdk-7u79-linux-x64.tar.gz,解压文件路径/usr/bob/jdk1.7.0_79
root用户登录,设置环境变量:vim /etc/profile
结尾加入以下:
#set java and hadoop envs
export JAVA_HOME=/usr/bob/jdk1.7.0_79
export PATH=$JAVA_HOME/bin:$PATH:.
export CLASSPATH=$JAVA_HOME/jre/lib:.
export HADOOP_HOME=/usr/bob/hadoop-2.7.1
export PATH=$PATH:$HADOOP_HOME/bin
验证jdk是否按照成功:运行java或javac,成功则继续,否则检查以上步骤。
二、安装和设置hadoop
1)解压hadoop-2.7.1.tar.gz文件:tar -xzvf hadoop-2.7.1.tar.gz
解压后文件为hadoop-2.7.1,查看文件内容如下:
[bob@master bob]$ ls -la hadoop-2.7.1
total 60
drwxr-x--- 9 bob bob 4096 Jun 29 14:15 .
drwxr-x---. 5 bob bob 4096 Aug 25 15:15 ..
drwxr-x--- 2 bob bob 4096 Jun 29 14:15 bin
drwxr-x--- 3 bob bob 4096 Jun 29 14:15 etc
drwxr-x--- 2 bob bob 4096 Jun 29 14:15 include
drwxr-x--- 3 bob bob 4096 Jun 29 14:15 lib
drwxr-x--- 2 bob bob 4096 Jun 29 14:15 libexec
-rw-r----- 1 bob bob 15429 Jun 29 14:15 LICENSE.txt
-rw-r----- 1 bob bob 101 Jun 29 14:15 NOTICE.txt
-rw-r----- 1 bob bob 1366 Jun 29 14:15 README.txt
drwxr-x--- 2 bob bob 4096 Jun 29 14:15 sbin
drwxr-x--- 4 bob bob 4096 Jun 29 14:15 share
2)配置参数:涉及以下四个文件
core-site.xml
- <?xml version="1.0" encoding="UTF-8"?>
- <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
- <!--
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License. See accompanying LICENSE file.
- -->
- <!-- Put site-specific property overrides in this file. -->
- <configuration>
- <property>
- <name>fs.defaultFS</name>
- <value>hdfs://master:9000</value>
- </property>
- <property>
- <name>io.file.buffer.size</name>
- <value>131072</value>
- </property>
- <property>
- <name>hadoop.tmp.dir</name>
- <value>/usr/bob/hadoop-2.7.1/tmp</value>
- </property>
- </configuration>
hdfs-site.xml
- <?xml version="1.0" encoding="UTF-8"?>
- <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
- <!--
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License. See accompanying LICENSE file.
- -->
- <!-- Put site-specific property overrides in this file. -->
- <configuration>
- <property>
- <name>dfs.namenode.name.dir</name>
- <value>/home/bob/hadoop_space/hdfs/name</value>
- </property>
- <property>
- <name>dfs.datanode.data.dir</name>
- <value>/home/bob/hadoop_space/hdfs/data</value>
- </property>
- <property>
- <name>dfs.replication</name>
- <value>2</value>
- </property>
- <property>
- <name>dfs.blocksize</name>
- <value>268435456</value>
- </property>
- <property>
- <name>dfs.namenode.handler.count</name>
- <value>100</value>
- </property>
- <property>
- <name>dfs.namenode.secondary.http-address</name>
- <value>master:50090</value>
- </property>
- <property>
- <name>dfs.namenode.secondary.https-address</name>
- <value>master:50091</value>
- </property>
- </configuration>
mapred-site.xml
- <?xml version="1.0"?>
- <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
- <!--
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License. See accompanying LICENSE file.
- -->
- <!-- Put site-specific property overrides in this file. -->
- <configuration>
- <property>
- <name>mapreduce.framework.name</name>
- <value>yarn</value>
- </property>
- <property>
- <name>mapreduce.jobhistory.address</name>
- <value>master:10020</value>
- </property>
- <property>
- <name>mapreduce.jobhistory.webapp.address</name>
- <value>master:19888</value>
- </property>
- </configuration>
yarn-site.xml
- <?xml version="1.0"?>
- <!--
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License. See accompanying LICENSE file.
- -->
- <configuration>
- <!-- Site specific YARN configuration properties -->
- <property>
- <name>yarn.resourcemanager.hostname</name>
- <value>10.204.16.59</value>
- </property>
- <property>
- <name>yarn.nodemanager.aux-services</name>
- <value>mapreduce_shuffle</value>
- </property>
- <property>
- <name>yarn.resourcemanager.address</name>
- <value>10.204.16.59:8032</value>
- </property>
- <property>
- <name>yarn.resourcemanager.scheduler.address</name>
- <value>master:8030</value>
- </property>
- <property>
- <name>yarn.resourcemanager.resource-tracker.address</name>
- <value>master:8031</value>
- </property>
- <property>
- <name>yarn.resourcemanager.admin.address</name>
- <value>master:8033</value>
- </property>
- <property>
- <name>yarn.resourcemanager.webapp.address</name>
- <value>master:8088</value>
- </property>
- </configuration>
slaves(填写slave的主机名或ip,仅需要在master上设置),内容如下:
slave7
slave8
三、初始化和启动
1、以bob用户登录格式化hdfs文件系统:hdfs namenode -format
运行格式化成功,节选输出最后三行如下:
15/08/25 18:09:54 INFO util.ExitUtil: Exiting with status 0
15/08/25 18:09:54 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at master/10.204.16.59
************************************************************/
2、启动hdfs:
以bob用户登录,启动hdfs集群:/usr/bob/hadoop-2.7.1/sbin/start-dfs.sh
输出如下:
15/08/25 19:00:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [master]
master: starting namenode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-namenode-master.out
slave8: starting datanode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-datanode-localhost.localdomain.out
slave7: starting datanode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-datanode-slave7.out
Starting secondary namenodes [master]
master: starting secondarynamenode, logging to /usr/bob/hadoop-2.7.1/logs/hadoop-bob-secondarynamenode-master.out
15/08/25 19:00:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
3、查看hdfs集群各主机的进程:jps
master上查看进程如下:
[bob@master sbin]$ jps
输出如下:
25551 Jps
25129 NameNode
25418 SecondaryNameNode
slave(slave7、slave8相同)上查看进程:
[bob@slave7 .ssh]$ jps
输出如下:
18468 DataNode
18560 Jps
4、启动yarn:
[bob@master sbin]$ ./start-yarn.sh
输出如下:
starting yarn daemons
starting resourcemanager, logging to /usr/bob/hadoop-2.7.1/logs/yarn-bob-resourcemanager-master.out
slave8: starting nodemanager, logging to /usr/bob/hadoop-2.7.1/logs/yarn-bob-nodemanager-localhost.localdomain.out
slave7: starting nodemanager, logging to /usr/bob/hadoop-2.7.1/logs/yarn-bob-nodemanager-slave7.out
5、查看yarn启动后集群进程状态:
master上查看进程如下:
[bob@master sbin]$ jps
输出如下:
25129 NameNode
25633 ResourceManager
25418 SecondaryNameNode
25904 Jps
slave(slave7、slave8相同)上查看进程如下:
[bob@slave7 .ssh]$ jps
输出如下:
18468 DataNode
18619 NodeManager
18751 Jps
四、运行范例
1、创建hdfs文件
查看hdfs文件列表告警:
[bob@master sbin]$ hdfs dfs -ls /
15/08/25 19:23:13 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
查看apache官网,NativeLibraryChecker is a tool to check whether native libraries are loaded correctly. You can launch NativeLibraryChecker as follows:
$ hadoop checknative -a
14/12/06 01:30:45 WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version
14/12/06 01:30:45 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
Native library checking:
hadoop: true /home/ozawa/hadoop/lib/native/libhadoop.so.1.0.0
zlib: true /lib/x86_64-linux-gnu/libz.so.1
snappy: true /usr/lib/libsnappy.so.1
lz4: true revision:99
bzip2: false
但是我这里运行结果全是false:
[bob@master native]$ hadoop checknative -a
15/08/25 19:40:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Native library checking:
hadoop: false
zlib: false
snappy: false
lz4: false
bzip2: false
openssl: false
15/08/25 19:40:04 INFO util.ExitUtil: Exiting with status 1
继续找原因,难道必需要重新编译hadoop源码?
---发现不影响正常功能,不知道如何消除此警告,先继续往下走吧。
2、上传本地文件至hdfs
-创建input、output文件夹用于后续输入、输出数据
[bob@master hadoop]$ hdfs dfs -mkdir /input
[bob@master hadoop]$ hdfs dfs -mkdir /output
-查看hdfs /目录下的文件信息
[bob@master hadoop]$ hdfs dfs –ls /
输出:
Found 5 items
drwxr-xr-x - bob supergroup 0 2015-08-31 20:23 /input
drwxr-xr-x - bob supergroup 0 2015-09-01 21:29 /output
drwxr-xr-x - bob supergroup 0 2015-08-31 18:03 /test1
drwx------ - bob supergroup 0 2015-08-31 19:23 /tmp
drwxr-xr-x - bob supergroup 0 2015-09-01 22:00 /user
-查看hdfs文件系统情况
[bob@master hadoop]$ hdfs dfsadmin -report
输出:
15/11/13 20:40:59 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Configured Capacity: 92229451776 (85.90 GB)
Present Capacity: 72146309120 (67.19 GB)
DFS Remaining: 71768203264 (66.84 GB)
DFS Used: 378105856 (360.59 MB)
DFS Used%: 0.52%
Under replicated blocks: 0
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0
-------------------------------------------------
Live datanodes (2):
Name: 10.204.16.58:50010 (slave8)
Hostname: slave8
Decommission Status : Normal
Configured Capacity: 46114725888 (42.95 GB)
DFS Used: 378073088 (360.56 MB)
Non DFS Used: 10757623808 (10.02 GB)
DFS Remaining: 34979028992 (32.58 GB)
DFS Used%: 0.82%
DFS Remaining%: 75.85%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Nov 13 20:41:00 CST 2015
Name: 10.204.16.57:50010 (slave7)
Hostname: slave7
Decommission Status : Normal
Configured Capacity: 46114725888 (42.95 GB)
DFS Used: 32768 (32 KB)
Non DFS Used: 9325518848 (8.69 GB)
DFS Remaining: 36789174272 (34.26 GB)
DFS Used%: 0.00%
DFS Remaining%: 79.78%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Nov 13 20:41:01 CST 2015
-创建wordcount文件夹hdfs dfs -mkdir /input/wordcount
-将本地/home/bob/study/下的所有txt文件上传到hdfs的/input/wordcount文件夹下
[bob@master hadoop]$ hdfs dfs -put /home/bob/study/*.txt /input/wordcount
-查看上传后的文件清单:
[bob@master hadoop]$ hadoop dfs -ls /input/wordcount
-rw-r--r-- 3 bob supergroup 100 2015-11-13 21:02 /input/wordcount/file1.txt
-rw-r--r-- 3 bob supergroup 383 2015-11-13 21:03 /input/wordcount/file2.txt
-rw-r--r-- 2 bob supergroup 73 2015-08-31 19:18 /input/wordcount/runHadoop.txt
3、运行自带的wordcount范例。
[bob@master hadoop]$ hadoop jar /usr/bob/hadoop-2.7.1/share/hadoop/mapreduce/hoop-mapreduce-examples-2.7.1.jar wordcount /input/wordcount/*.txt /output/wordcount
15/11/13 21:41:14 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/11/13 21:41:16 INFO client.RMProxy: Connecting to ResourceManager at /10.204.16.59:8032
15/11/13 21:41:17 INFO input.FileInputFormat: Total input paths to process : 3
15/11/13 21:41:17 INFO mapreduce.JobSubmitter: number of splits:3
15/11/13 21:41:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1441114883272_0008
15/11/13 21:41:18 INFO impl.YarnClientImpl: Submitted application application_1441114883272_0008
15/11/13 21:41:18 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1441114883272_0008/
15/11/13 21:41:18 INFO mapreduce.Job: Running job: job_1441114883272_0008
15/11/13 21:50:57 INFO mapreduce.Job: Job job_1441114883272_0008 running in uber mode : false
15/11/13 21:50:57 INFO mapreduce.Job: map 0% reduce 0%
15/11/13 21:51:10 INFO mapreduce.Job: map 100% reduce 0%
15/11/13 21:58:31 INFO mapreduce.Job: Task Id : attempt_1441114883272_0008_r_000000_0, Status : FAILED
Container launch failed for container_1441114883272_0008_01_000005 : java.net.NoRouteToHostException: No Route to Host from slave8/10.204.16.58 to slave7:45758 failed on socket timeout exception: java.net.NoRouteToHostException: No route to host; For more details see: http://wiki.apache.org/hadoop/NoRouteToHost
at sun.reflect.GeneratedConstructorAccessor22.newInstance(Unknown Source)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:792)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:758)
at org.apache.hadoop.ipc.Client.call(Client.java:1480)
at org.apache.hadoop.ipc.Client.call(Client.java:1407)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy36.startContainers(Unknown Source)
at org.apache.hadoop.yarn.api.impl.pb.client.ContainerManagementProtocolPBClientImpl.startContainers(ContainerManagementProtocolPBClientImpl.java:96)
at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy37.startContainers(Unknown Source)
at org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImpl$Container.launch(ContainerLauncherImpl.java:151)
at org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImpl$EventProcessor.run(ContainerLauncherImpl.java:375)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.NoRouteToHostException: No route to host
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:609)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:707)
at org.apache.hadoop.ipc.Client$Connection.access$2800(Client.java:370)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1529)
at org.apache.hadoop.ipc.Client.call(Client.java:1446)
... 15 more
15/11/13 21:58:40 INFO mapreduce.Job: map 100% reduce 100%
15/11/13 21:58:41 INFO mapreduce.Job: Job job_1441114883272_0008 completed successfully
15/11/13 21:58:41 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=680
FILE: Number of bytes written=462325
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=887
HDFS: Number of bytes written=327
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=3
Launched reduce tasks=1
Data-local map tasks=3
Total time spent by all maps in occupied slots (ms)=30688
Total time spent by all reduces in occupied slots (ms)=6346
Total time spent by all map tasks (ms)=30688
Total time spent by all reduce tasks (ms)=6346
Total vcore-seconds taken by all map tasks=30688
Total vcore-seconds taken by all reduce tasks=6346
Total megabyte-seconds taken by all map tasks=31424512
Total megabyte-seconds taken by all reduce tasks=6498304
Map-Reduce Framework
Map input records=13
Map output records=52
Map output bytes=752
Map output materialized bytes=692
Input split bytes=331
Combine input records=52
Combine output records=45
Reduce input groups=25
Reduce shuffle bytes=692
Reduce input records=45
Reduce output records=25
Spilled Records=90
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=524
CPU time spent (ms)=5900
Physical memory (bytes) snapshot=1006231552
Virtual memory (bytes) snapshot=4822319104
Total committed heap usage (bytes)=718798848
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=556
File Output Format Counters
Bytes Written=327
运行过程中抛出异常,如下:
5/11/13 21:58:31 INFO mapreduce.Job: Task Id : attempt_1441114883272_0008_r_000000_0, Status : FAILED
Container
launch failed for container_1441114883272_0008_01_000005 :
java.net.NoRouteToHostException: No Route to Host from
slave8/10.204.16.58 to slave7:45758 failed on socket timeout exception:
java.net.NoRouteToHostException: No route to host; For more details
see: http://wiki.apache.org/hadoop/NoRouteToHost
在等待较长时间后,最终运行成功,报错的原因以后继续分析。
-运行成功后,在 /output/wordcount下自动生成两个文件:_SUCCESS、part-r-00000,可用hdfs命令查看:
[bob@master hadoop]$ hdfs dfs -ls /output/wordcount
15/11/13 22:31:59 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r-- 2 bob supergroup 0 2015-11-13 21:58 /output/wordcount/_SUCCESS
-rw-r--r-- 2 bob supergroup 327 2015-11-13 21:58 /output/wordcount/part-r-00000
-显示part-r-00000文件内容,命令及输出如下:
[bob@master hadoop]$ hdfs dfs -cat /output/wordcount/part-r-00000
15/11/13 22:34:07 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
/home/bob/study/hello.jar 1
/input/*.txt 2
/input/wordcount 1
/output/wordcount 3
/usr/bob/hadoop-2.7.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar2
day 2
example 2
first 2
hadoop 5
hello 2
i 2
in 2
is 2
it 2
jar 3
my 2
myself,come 2
nice 2
on. 2
succeed 2
wordcount 2
中国人 1
中国梦 2
学习 2
学校 2
-------------------------------------------------------------------------
ok,第一次完整搭建过程说完了,欢迎批评指正。
posted @ 2015-08-25 14:26 Bob.Guo
first updated @ 2015-11-13 20:29 Bob.Guo
hadoop2.7.1安装和部署的更多相关文章
- hadoop2.5.2 安装与部署
主从机构 主:jobtracker 从:tasktracker 四个阶段 1. split 2. Mapper: key-value(对象) 3. shuffle a) 分区(partition,H ...
- hadoop2.5.2安装部署
0x00 说明 此处已经省略基本配置步骤参考Hadoop1.0.3环境搭建流程,省略主要步骤有: 建立一般用户 关闭防火墙和SELinux 网络配置 0x01 配置master免密钥登录slave 生 ...
- Apache Hadoop2.x 边安装边入门
完整PDF版本:<Apache Hadoop2.x边安装边入门> 目录 第一部分:Linux环境安装 第一步.配置Vmware NAT网络 一. Vmware网络模式介绍 二. NAT模式 ...
- Kafka的安装和部署及测试
1.简介 大数据分析处理平台包括数据的接入,数据的存储,数据的处理,以及后面的展示或者应用.今天我们连说一下数据的接入,数据的接入目前比较普遍的是采用kafka将前面的数据通过消息的方式,以数据流的形 ...
- Hadoop第3周练习--Hadoop2.X编译安装和实验
作业题目 位系统下进行本地编译的安装方式 选2 (1) 能否给web监控界面加上安全机制,怎样实现?抓图过程 (2)模拟namenode崩溃,例如将name目录的内容全部删除,然后通过secondar ...
- Hive安装与部署集成mysql
前提条件: 1.一台配置好hadoop环境的虚拟机.hadoop环境搭建教程:稍后补充 2.存在hadoop账户.不存在的可以新建hadoop账户安装配置hadoop. 安装教程: 一.Mysql安装 ...
- CentOS6安装各种大数据软件 第十章:Spark集群安装和部署
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- Hue的安装与部署
Hue的安装与部署 hadoop hue Hue 简介 Hue是一个开源的Apache Hadoop UI系统,最早是由Cloudera Desktop演化而来,由Cloudera贡献给开源社区,它是 ...
- hadoop2.4.1伪分布模式部署
hadoop2.4.1伪分布模式部署 (承接上一篇hadoop2.4.1-src的编译安装继续配置:http://www.cnblogs.com/wrencai/p/3897438.html) 感谢: ...
随机推荐
- iOS:时间相关(18-10-13更)
先整理出时间相关的程序,以后有空再写成单例. 1.日历(NSCalendar) 2.时间格式() 3.时间戳 附录: 1.定时器 1.日历(NSCalendar) 1.想要获取 世纪.年.月.日.时. ...
- Java工具-----native2ascii
概述 native2ascii.exe位于%JAVA_HOME/bin目录下,所以要使用,得先安装JDK. 该工具用来将本地编码转换为Unicode,英文字母.阿拉伯数字不会转化. 官方文档:http ...
- Centos7前后台运行jar包
方式一: java -jar lf-test-1.0-SNAPSHOT.jar 前台运行,当前ssh窗口被锁定,可按CTRL + C打断程序运行,或直接关闭窗口,程序退出. 方式二: java -ja ...
- 解决在 win10 下 vs2017 中创建 MFC 程序拖放文件接收不到 WM_DROPFILES 消息问题
解决方案 这个问题是由于 win10 的安全机制搞的鬼,即使以管理员权限运行也不行,因为它会把 WM_DROPFILES 消息过滤掉,那怎么办呢?只需在窗口初始化 OnInitDialog() 里添加 ...
- mysql-5.7.24 在centos7安装
搭建环境:mysql5.7.24 CentOS-7-x86_64-DVD-1804.iso 桌面版 1. 进入官网:https://dev.mysql.com/downloads/mysql/ 该 ...
- kubernetes常用基础命令
创建资源对象 创建名为nginx-deploy的控制器资源对象 [root@master ~]# kubectl run nginx-deploy --image=nginx:1.12 --repli ...
- (杭电 2054)A==B?(这真是个巨坑)
A == B ? Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- linux——高级文本处理命令之wc、cut、sort
1. wc :Word Count 命令的功能为统计指定文件中的字节数.字数.行数,并将统计结果显示输出 1.1 命令格式: wc [选项]文件... 1.2 命令参数: -c 统计字节数. -l ...
- R语言(自定义函数、循环语句、管道函数)
学习R语言半年多了,以前比较注重统计方法上的学习,但是最近感觉一些基础知识也很重要.去年的参考资料是<R语言实战>,今年主要是看视频.推荐网易云课堂里的教程,很多资料都是很良心的~ 目前学 ...
- FPGA时序逻辑中常见的几类延时与时间(五)
FPGA逻辑代码重要的是理解其中的时序逻辑,延时与各种时间的记忆也是一件头疼的事,这里把我最近看到的比较简单的几类总结起来,共同学习. 一.平均传输延时 平均传输延时 二.开启时间与关闭时间 开 ...