Educational Codeforces Round 57 Solution
A. Find Divisible
签到。
#include <bits/stdc++.h>
using namespace std; int t, l, r; int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &l, &r);
printf("%d %d\n", l, l * );
}
return ;
}
B. Substring Removal
签到。
#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 200010
const ll MOD = ;
int len;
char s[N]; ll f(ll x) { return x * (x + ) / ; } int main()
{
while (scanf("%d", &len) != EOF)
{
scanf("%s", s + );
int l, r;
for (l = ; l <= len; ++l) if (s[l] != s[l - ])
break;
for (r = len - ; r >= ; --r) if (s[r] != s[r + ])
break;
ll res;
r = len - r + ;
if (s[] == s[len])
res = min(f(len), 1ll * l * r);
else
res = min(f(len), 1ll * l + r - );
printf("%lld\n", res % MOD);
}
return ;
}
C. Polygon for the Angle
Solved.
题意:
问在一个正n多边形中任意三点构成的角的集合中包含ang的最小的n是多少
思路:
一个正$n多边形每个角的大小是 x = 180 - \frac{360}{n}$
我们考虑点可以怎么选,如果中间的点固定,两边的点往两边走的话
我们可以发现单侧的一条边和单侧会构成一个多边形
这个多边形有$k个角,但是有k - 2个角都是x,并且剩下的两个角相等$
这样就可以算出选的点往两边扩展会减去的角的大小
我们发现,两个点往两边扩展分别构成的多边形的点数为$k, o$
那么 $k + o <= n + 1$
那么通过整理我们发现一个多边形可以构成的角的集合为
$180 - (180 - (j - 2)) / n \;\; j \in [4, n + 1]$
而且我们发现 当$n = 180 的时候可以构成[1, 179]种的任意角,那么遍历一下,遍历到180预处理一下答案即可$
#include <bits/stdc++.h>
using namespace std; int t, n;
int ans[]; int main()
{
memset(ans, -, sizeof ans);
for (int i = ; i >= ; --i) for (int j = ; j <= i + ; ++j) if (( * (j - ) % i) == )
{
int x = - ( * (j - )) / i;
ans[x] = i;
}
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
printf("%d\n", ans[n]);
}
return ;
}
D. Easy Problem
Upsolved.
题意:
给处一个字符串,有权,求移除一些字符使得花费最少并且没有一个子序列构成'hard'
思路:
我们发现只要断掉一种字符的路就可以了
那么对于'h' 要断掉它的路就必然要去掉所有的'h'
但是对于'a', 'r', 'd' 这三种字符来说,断掉他们的路,可以选择去掉当前
遇到的字符,或者去掉前面所有在他们前面位置的那个字符
#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 100010
int n; ll dp[N];
char s[N]; int main()
{
while (scanf("%d", &n) != EOF)
{
scanf("%s", s + );
memset(dp, 0x3f, sizeof dp);
dp[] = ;
for (int i = , a; i <= n; ++i)
{
scanf("%d", &a);
if (s[i] == 'h')
{
dp[] = min(dp[], dp[]);
dp[] += a;
}
else if (s[i] == 'a')
{
dp[] = min(dp[], dp[]);
dp[] += a;
}
else if (s[i] == 'r')
{
dp[] = min(dp[], dp[]);
dp[] += a;
}
else if (s[i] == 'd')
dp[] += a;
}
printf("%lld\n", *min_element(dp, dp + ));
}
return ;
}
F. Inversion Expectation
UpSolved.
题意:
有一个排列,有些位置空着,求逆序对的期望
思路:
约定没有确定的数的个数为$x$
对于确定的数,它的贡献由两部分构成
1° 它对其他确定的数的贡献
2° 它对不确定的数的贡献
第一部分 我们可以对确定的数做一遍逆序对,然后乘$fac[x] 即可$
第二部分 我们可以算不确定的数对它的贡献
那么对于不确定的数
1° 它可以在任意的空位上,并且在每个空位上的可能次数为$fac[x - 1]$,
那么在一个空位上的单次贡献是在它前面的比它大的数的个数和在它后面的比它小的个数
这个将不确定的数排序,从小到大做一遍,再从大到小做一遍,我们发现贡献是递增的
每个确定的数只会拿出来做一次
2° 那么对于不确定的数,我们知道,不确定的数可以在任意个空位,
比它大的数如果在它之前的任意空位上就会产生贡献
那么考虑,一个比他大的数在它前面的某个位置,这个时候这两个数的位置确定
剩下的数的排列种树为$fac[x - 2]$
并且比他大的数可以在他前面的任意一个空位
即空位数 * 比它大的数 * fac[x - 2] 就是一个不确定的数产生的贡献
#include <bits/stdc++.h>
using namespace std; #define N 200010
#define ll long long
const ll MOD = ;
int n, a[N], b[N], pos[N], sum[N][]; ll qmod(ll base, ll n)
{
ll res = ;
while (n)
{
if (n & ) res = (res * base) % MOD;
base = (base * base) % MOD;
n >>= ;
}
return res;
} ll fac[N];
void init()
{
fac[] = ;
for (int i = ; i <= ; ++i) fac[i] = (fac[i - ] * i) % MOD;
} ll f(ll x)
{
return x * (x + ) / ;
} struct BIT
{
int a[N];
void init() { memset(a, , sizeof a); }
void update(int x)
{
for (; x <= n; x += x & -x)
++a[x];
}
int query(int x)
{
int res = ;
for (; x; x -= x & -x)
res += a[x];
return res;
}
}bit; int main()
{
init();
while (scanf("%d", &n) != EOF)
{
memset(pos, -, sizeof pos);
bit.init();
for (int i = ; i <= n; ++i) scanf("%d", a + i);
for (int i = ; i <= n; ++i) if (a[i] != -)
pos[a[i]] = i;
sum[n + ][] = ;
ll tot[] = {, };
for (int i = n; i >= ; --i)
sum[i][] = sum[i + ][] + (a[i] == -);
for (int i = ; i <= n; ++i) if (a[i] != -)
tot[] += sum[i][];
sum[][] = ;
for (int i = ; i <= n; ++i)
sum[i][] = sum[i - ][] + (a[i] == -);
for (int i = ; i <= n; ++i) if (a[i] != -)
tot[] += sum[i][];
b[] = ;
for (int i = ; i <= n; ++i) if (pos[i] == -)
b[++b[]] = i;
ll res = ;
int down = , up = n;
for (int i = ; i <= b[]; ++i)
{
while (down < b[i])
{
if (pos[down] != -) tot[] -= sum[pos[down]][];
++down;
}
res = (res + fac[b[] - ] * (f(b[] - ) % MOD) % MOD * (b[] - i) % MOD) % MOD;
res = (res + tot[] % MOD * fac[b[] - ] % MOD) % MOD;
}
for (int i = b[]; i >= ; --i)
{
while (up > b[i])
{
if (pos[up] != -) tot[] -= sum[pos[up]][];
--up;
}
res = (res + tot[] % MOD * fac[b[] - ] % MOD) % MOD;
}
ll tmp = ;
for (int i = ; i <= n; ++i) if (a[i] != -)
{
bit.update(a[i]);
tmp += bit.query(n) - bit.query(a[i]);
}
res = (res + tmp * fac[b[]] % MOD) % MOD;
printf("%lld\n", res * qmod(fac[b[]], MOD - ) % MOD);
}
return ;
}
Educational Codeforces Round 57 Solution的更多相关文章
- Educational Codeforces Round 57 (Rated for Div. 2) ABCDEF题解
题目总链接:https://codeforces.com/contest/1096 A. Find Divisible 题意: 给出l,r,在[l,r]里面找两个数x,y,使得y%x==0,保证有解. ...
- Educational Codeforces Round 57 (Rated for Div. 2) D dp
https://codeforces.com/contest/1096/problem/D 题意 给一个串s,删掉一个字符的代价为a[i],问使得s的子串不含"hard"的最小代价 ...
- Educational Codeforces Round 57 (Rated for Div. 2) C 正多边形 + 枚举
https://codeforces.com/contest/1096/problem/C 题意 问是否存在一正多边形内三点构成的角度数为ang,若存在输出最小边数 题解 三点构成的角是个圆周角,假设 ...
- CF Educational Codeforces Round 57划水记
因为是unrated于是就叫划水记了,而且本场也就用了1h左右. A.B:划水去了,没做 C:大水题,根据初三课本中圆的知识,可以把角度化成弧长,而这是正多边形,所以又可以化成边数,于是假设读入为a, ...
- Codeforces Educational Codeforces Round 57 题解
传送门 Div 2的比赛,前四题还有那么多人过,应该是SB题,就不讲了. 这场比赛一堆计数题,很舒服.(虽然我没打) E. The Top Scorer 其实这题也不难,不知道为什么这么少人过. 考虑 ...
- Educational Codeforces Round 57 (Rated for Div. 2)
我好菜啊. A - Find Divisible 好像没什么可说的. #include<cstdio> #include<cstring> #include<algori ...
- Educational Codeforces Round 57题解
A.Find Divisible 沙比题 显然l和2*l可以直接满足条件. 代码 #include<iostream> #include<cctype> #include< ...
- Educational Codeforces Round 56 Solution
A. Dice Rolling 签到. #include <bits/stdc++.h> using namespace std; int t, n; int main() { scanf ...
- Educational Codeforces Round 58 Solution
A. Minimum Integer 签到. #include <bits/stdc++.h> using namespace std; #define ll long long ll l ...
随机推荐
- swift swift学习笔记--函数和闭包
使用 func来声明一个函数.通过在名字之后在圆括号内添加一系列参数来调用这个方法.使用 ->来分隔形式参数名字类型和函数返回的类型 func greet(person: String, day ...
- Android-Gallery GridView ImageSwitcher 使用
http://liangruijun.blog.51cto.com/3061169/647355/ http://blog.csdn.net/wantianwen/article/details/23 ...
- 《转》python学习(5)--数据类型
转自 http://www.cnblogs.com/BeginMan/archive/2013/06/08/3125876.html 一.标准类型函数 cmp():比较大小 str():转换为字符串 ...
- 【HTML】改变鼠标样式图片css
你需要一张图 .ico 的 格式 如果一开始你要解决的是怎么去用png 格式图片转成 ICO格式 先做一张32*32的PNG格式图片 然后 打开http://www.easyicon.net/co ...
- NodeJS收发GET和POST请求
目录: 一 express框架接收 二 接收Get 三 发送Get 四 接收Post 五 发送Post 一 express框架接收 app.get('/',function(req,res) { va ...
- 使用jhipster搭建微服务--简单demo
简介 jhipster简单来说是一个基于nodejs+yeoman的java代码生成器.往大了说是基于java的一套微服务解决方案.请注意是一整套的微服务解决方案.jhipster在整个程序架构上都做 ...
- iOS5 ARC学习笔记:strong、weak等详解
2013-03-25 13:41 佚名 oschina 字号:T | T iOS5中加入了新知识,就是ARC,其实我并不是很喜欢它,因为习惯了自己管理内存.但是学习还是很有必要的.现在我们看看iOS5 ...
- 在centos上用nginx访问php显示404
yum install nginx -y 可以在浏览器 访问html文件,但是访问不了php文件 后来我看见别人别人响应的参数有php,而我没有我,就觉得php配置应该有问题: 我 yum insta ...
- 170525、解决maven隐式依赖包版本问题
今天在使用dubbo2.5.3版本的时候,启动项目的时候发现一个问题,tomcat启动一直报错 Caused by: java.lang.IllegalStateException: Context ...
- 浙江工业大学校赛 画图游戏 BugZhu抽抽抽!!
BugZhu抽抽抽!! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...