A - Palindrome

题意:给出一个字符串,找出其中有多少个子串满足one-half-palindromic 的定义

思路:其实就是找一个i, j  使得 以i为中轴的回文串长度和以j为中轴的回文串长度都大于j - i + 1

先Manacher 预处理出以每个字符为中轴的最长回文串长度,然后用树状数组维护j ,枚举i

 #include<bits/stdc++.h>

 using namespace std;

 typedef long long ll;
const int maxn = 5e5 + ; int l;
char Ma[maxn << ];
int Mp[maxn << ]; inline void Manacher(char s[], int len)
{
l = ;
Ma[l++] = '$';
Ma[l++] = '#';
for(int i = ; i < len; ++i)
{
Ma[l++] = s[i];
Ma[l++] = '#';
}
Ma[l] = ;
int mx = , id = ;
for(int i = ; i < l; ++i)
{
Mp[i] = mx > i ? min(Mp[ * id - i], mx - i) : ;
while(Ma[i + Mp[i]] == Ma[i - Mp[i]]) Mp[i]++;
if(i + Mp[i] > mx)
{
mx = i + Mp[i];
id = i;
}
}
} int cnt[maxn << ];
char str[maxn];
int a[maxn];
int len; vector <int> vv[maxn]; inline int lowbit(int x)
{
return x & (-x);
} inline void update(int x, int val)
{
for (int i = x; i <= len; i += lowbit(i))
a[i] += val;
} inline int query(int x)
{
int res = ;
for (int i = x; i > ; i -= lowbit(i))
res += a[i];
return res;
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
memset(a, , sizeof a);
scanf("%s", str);
len = strlen(str);
Manacher(str, len);
ll ans = ;
int pos = ;
for(int i = ; i < l; i += )
{
cnt[pos]= Mp[i] / - ;
vv[pos - cnt[pos]].push_back(pos);
pos++;
}
for(int i = ; i <= pos; ++i)
{
for (auto it : vv[i])
{
update(it, );
}
vv[i].clear();
ans += query(i + cnt[i]) - query(i);
// cout << ans << endl;
}
printf("%lld\n",ans);
}
return ;
}

B - K-th Number

题意:给出n个数,把这n个数中长度>= k 的区间中的第k小的数放到数组b中,最后求出数组b中的第m大的数

思路:二分答案,然后双指针法判断是否正确,因为存在这样一个性质,假如一个长度>=k的区间里面的第k小的数 >= ans

那么 之后如果加入的数大于它,那么没有影响,如果小于它,要被计数

 #include<bits/stdc++.h>

 using namespace std;

 typedef long long ll;
const int maxn = 1e5 + ; int n, k ;
ll m;
int arr[maxn];
int brr[maxn]; inline bool check(int mid)
{
ll tot = ;
ll res = ;
for(int i = , j = ; i <= n; ++i)
{
while(j <= n && res < k)
{
if(arr[++j] >= mid) ++res;
}
if(res >= k) tot += n - j + ;
if(arr[i] >= mid) res--;
}
return tot >= m;
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d %d %lld", &n, &k, &m);
for(int i = ; i <= n; ++i)
{
scanf("%d", arr + i);
brr[i] = arr[i];
}
sort(brr + , brr + + n);
int l = ;
int r = n;
int ans = ;
while(r - l >= )
{
int mid = (l + r) >> ;
if(check(brr[mid]))
{
ans = mid;
l = mid + ;
}
else
{
r = mid - ;
}
}
printf("%d\n",brr[ans]);
}
return ;
}

C - Confliction

留坑。

D - X-Men

题意:有若干个X-Man  他们要汇合,直到所有Xman的距离都小于等于1的时候,他们就停止行动,一个小时行进一个单位长度,求他们期望的行进时间

思路:因为给的是一棵树,实际上就是最远的两个X-man 的距离 / 2

 #include <bits/stdc++.h>
using namespace std; #define N 1010 struct Edge
{
int to, nx;
inline Edge() {}
inline Edge(int to, int nx) : to(to), nx(nx) {}
}edge[N << ]; int t, n, m;
int head[N], pos;
bool vis[N]; inline void Init()
{
memset(vis, false, sizeof vis);
memset(head, -, sizeof head);
pos = ;
} inline void addedge(int u, int v)
{
edge[++pos] = Edge(v, head[u]); head[u] = pos;
edge[++pos] = Edge(u, head[v]); head[v] = pos;
} int rmq[N << ];
int F[N << ];
int P[N], deep[N];
int cnt; struct ST
{
int mm[N << ];
int dp[N << ][];
inline void init(int n)
{
mm[] = -;
for (int i = ; i <= n; ++i)
{
mm[i] = ((i & (i - )) == ) ? mm[i - ] + : mm[i - ];
dp[i][] = i;
}
for (int j = ; j <= mm[n]; ++j)
for (int i = ; i + ( << j) - <= n; ++i)
dp[i][j] = rmq[dp[i][j - ]] < rmq[dp[i + ( << (j - ))][j - ]] ? dp[i][j - ] : dp[i + ( << (j - ))][j - ];
}
inline int query(int a, int b)
{
if (a > b) swap(a, b);
int k = mm[b - a + ];
return rmq[dp[a][k]] <= rmq[dp[b - ( << k) + ][k]] ? dp[a][k] : dp[b - ( << k) + ][k];
}
}st; inline void DFS(int u, int pre)
{
F[++cnt] = u;
rmq[cnt] = deep[u];
P[u] = cnt;
for (int it = head[u]; ~it; it = edge[it].nx)
{
int v = edge[it].to;
if (v == pre) continue;
deep[v] = deep[u] + ;
DFS(v, u);
F[++cnt] = u;
rmq[cnt] = deep[u];
}
} inline void LCA_Init(int root, int node_num)
{
cnt = ; deep[] = ;
DFS(root, root);
st.init( * node_num - ); } inline int query_lca(int u, int v)
{
return F[st.query(P[u], P[v])];
} inline void Run()
{
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m); Init();
for (int i = , x; i <= m; ++i)
{
scanf("%d", &x);
vis[x] = true;
}
for (int i = , u, v; i < n; ++i)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
LCA_Init(, n);
int ans = ;
for (int i = ; i <= n; ++i)
{
if (!vis[i]) continue;
for (int j = ; j <= n; ++j)
{
if (!vis[j] || j == i) continue;
int lca = query_lca(i, j);
//printf("%d %d %d\n", i, j, lca);
ans = max(ans, deep[i] + deep[j] - * deep[lca]);
}
}
printf("%d.00\n", ans / );
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run(); return ;
}

E - Square Network

留坑。

F - Permutation

题意:给出一个n,里面有1-n,构造一个数列使得满足题目要求

思路:142536  类似这样构造

 #include <bits/stdc++.h>

 using namespace std;

 #define N 100010

 int t, n;
int arr[N]; int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
int cnt = ;
for (int i = ; i <= n; i += )
arr[i] = cnt++;
for (int i = ; i <= n; i += )
arr[i] = cnt++;
for (int i = ; i <= n; ++i) printf("%d%c", arr[i], " \n"[i == n]);
}
return ;
}

G - Debug

留坑。

H - A Simple Stone Game

题意:有n堆石子,每次可以移动一个石子要另一堆,如果某一次移动之后,每一堆的石子个数都是x(x > 1) 的倍数,那么游戏结束,问最少需要移动多少个石子使得游戏结束

思路:x一定是石子和的因数,我们可以枚举石子和的每个因数,求出每个因数下的移动次数,取min。至于如何求移动次数,我们可以将每个石子的余数记录下来,并将余数相加再除以因数,可以的到有多少堆石子得到石子,然后再将需要减少的石子数相加就可以得到。注意当只有一个石子的时候为0;

 #include<bits/stdc++.h>

 using namespace std;

 typedef long long ll;
const ll INFLL = 0x3f3f3f3f3f3f3f3f;
const int maxn = 1e5 + ; int n;
ll arr[maxn];
ll sum;
ll ans;
int cnt;
ll brr[maxn];
ll crr[maxn]; int tot;
ll prime[maxn];
bool isprime[maxn]; inline void Init_prime()
{
memset(isprime, true, sizeof isprime);
isprime[] = isprime[] = false;
for(int i = ; i < maxn; ++i)
{
if(isprime[i] == true)
{
prime[tot++] = i;
for(int j = i << ; j < maxn; j += i)
{
isprime[j] = false;
}
}
}
} inline void cal(ll x)
{
ll sum_tmp = ;
int pos = ;
for(int i = ; i <= n; ++i)
{
if(arr[i] % x)
{
crr[pos++] = arr[i] % x;
sum_tmp += arr[i] % x;
}
}
ll p = sum_tmp / x;
sort(crr, crr + pos);
ll res = ;
for(int i = ; i < pos - p; ++i)
{
res += crr[i];
}
ans = min(ans, res);
} inline void get_x(ll tmp)
{
ll tmp_ = sqrt(tmp) + ;
for(int i = ; i < tot && prime[i] <= tmp_; ++i)
{
if(tmp % prime[i] == )
{
cal(prime[i]);
}
}
} int main()
{
Init_prime();
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d", &n);
sum = ;
for(int i = ; i <= n; ++i)
{
scanf("%lld", arr + i);
sum += arr[i];
}
ans = INFLL;
get_x(sum);
cal(sum);
printf("%lld\n", ans); }
return ;
}
I - Cow`s Segment
留坑。
 
J - Interview
留坑。
 
K - Server
题意:给出一些区间,每个区间附加两个值ai 和 bi  选出一些区间覆盖1 - t  并且 sgm(ai) / sgm(bi) 最小
思路:二分答案 那么 就是使得 sgm(ai) - sgm(bi) * x >0
然后 ai - bi * x > 0 的都选,,剩下的就是用最小代价覆盖所有区间 dp + 数据结构
我是用线段树和树状数组,本来以为动态开点线段树会比普通线段树要快一点,实际上没有
线段树
 #include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std; #define N 100010
#define ll long long
#define INF 0x3f3f3f3f const double eps = 1e-; struct node
{
int l, r;
double Min;
inline node() {}
inline node(int l, int r, double Min) : l(l), r(r), Min(Min) {}
}tree[N << ]; int cnt, root; inline void Init()
{
cnt = ; root = ;
tree[] = node(, , INF * 1.0);
} inline void update(int &id, int l, int r, int ql, int qr, double val)
{
if (id == )
{
id = ++cnt;
tree[id] = node(, , val);
}
if (l >= ql && r <= qr)
{
tree[id].Min = min(tree[id].Min, val);
return;
}
int mid = (l + r) >> ;
if (ql <= mid) update(tree[id].l, l, mid, ql, qr, val);
if (qr > mid) update(tree[id].r, mid + , r, ql, qr, val);
} double ansMin; inline void query(int id, int l, int r, int pos)
{
if (id == ) return;
ansMin = min(ansMin, tree[id].Min);
if (l == r)
return;
int mid = (l + r) >> ;
if (pos <= mid) query(tree[id].l, l, mid, pos);
else query(tree[id].r, mid + , r, pos);
} struct Interval
{
int l, r; double a, b;
inline void scan()
{
scanf("%d%d%lf%lf", &l, &r, &a, &b);
}
inline bool operator < (const Interval &r) const
{
return l < r.l;
}
}interval[N]; int T;
int n, t; inline bool check(double x)
{
double sum = 0.0;
for (int i = ; i <= n; ++i)
if (interval[i].a - interval[i].b * x < )
sum += interval[i].a - interval[i].b * x;
Init();
update(root, , t, , , 0.0);
for (int i = ; i <= n; ++i)
{
ansMin = INF * 1.0; query(root, , t, interval[i].l - );
ansMin = max(ansMin, ansMin + interval[i].a - interval[i].b * x);
update(root, , t, interval[i].l, interval[i].r, ansMin);
}
ansMin = INF * 1.0; query(root, , t, t);
return sum + ansMin > ;
} inline void Run()
{
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &t);
for (int i = ; i <= n; ++i)
interval[i].scan();
sort(interval + , interval + + n);
double l = , r = * 1.0;
while (r - l > eps)
{
double mid = (l + r) / ;
if (check(mid))
l = mid;
else
r = mid;
}
printf("%.3f\n", l);
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run(); return ;
}

树状数组

 #include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std; #define N 100010
#define ll long long
#define INF 0x3f3f3f3f const double eps = 1e-; double a[N];
int T, n, t; inline int lowbit(int x)
{
return x & (-x);
} inline void update(int x, double val)
{
for (int i = x; i > ; i -= lowbit(i))
a[i] = min(a[i], val);
} inline double query(int x)
{
if (x == ) return ;
double res = INF;
for (int i = x; i <= t; i += lowbit(i))
res = min(a[i], res);
return res;
} struct Interval
{
int l, r; double a, b;
inline void scan()
{
scanf("%d%d%lf%lf", &l, &r, &a, &b);
}
inline bool operator < (const Interval &r) const
{
return l < r.l;
}
}interval[N]; inline bool check(double mid)
{
double sum = 0.0;
for (int i = ; i <= n; ++i)
if (interval[i].a - interval[i].b * mid < )
sum += interval[i].a - interval[i].b * mid;
for (int i = ; i <= t; ++i) a[i] = INF;
for (int i = ; i <= n; ++i)
{
double x = query(interval[i].l - );
x = max(x, interval[i].a - interval[i].b * mid);
update(interval[i].r, x);
}
return sum + query(t) > ;
} inline void Run()
{
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &t);
for (int i = ; i <= n; ++i)
interval[i].scan();
sort(interval + , interval + + n);
double l = , r = * 1.0;
while (r - l > eps)
{
double mid = (l + r) / ;
if (check(mid))
l = mid;
else
r = mid;
}
printf("%.3f\n", l);
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run(); return ;
}
 
 
L - Color a Tree
题意:给出两条规则: A , 以x为根的子树下的黑点数量不小于y  B : 除了以x为根的子树下的黑点数量不小于y ,求满足给出的所有规则,需要染色的最小数量
思路:假如我们知道答案,那么B规则就可以转变为以x为根的子树下的黑点数量不大于(ans - y)
然后二分,DFScheck
 #include <bits/stdc++.h>
using namespace std; #define N 100010 struct Edge
{
int to, nx;
inline Edge() {}
inline Edge(int to, int nx) : to(to), nx(nx) {}
}edge[N << ]; int n;
int head[N], pos;
int son[N];
int A[N], B[N], C[N]; inline void Init()
{
memset(head, -, sizeof head);
memset(son, , sizeof son);
memset(A, , sizeof A);
memset(B, , sizeof B);
pos = ;
} inline void addedge(int u, int v)
{
edge[++pos] = Edge(v, head[u]); head[u] = pos;
edge[++pos] = Edge(u, head[v]); head[v] = pos;
} inline void DFS_PRE(int u, int pre)
{
son[u] = ; int cnt = ;
for (int it = head[u]; ~it; it = edge[it].nx)
{
int v = edge[it].to;
if (v == pre) continue;
DFS_PRE(v, u);
cnt += A[v];
son[u] += son[v];
}
A[u] = max(A[u], cnt);
} inline void DFS_CHECK(int u, int pre)
{
int cnt = ;
for (int it = head[u]; ~it; it = edge[it].nx)
{
int v = edge[it].to;
if (v == pre) continue;
DFS_CHECK(v, u);
cnt += C[v];
}
C[u] = min(C[u], cnt);
} inline bool check(int mid)
{
for (int i = ; i <= n; ++i)
{
C[i] = mid - B[i];
if (A[i] > son[i] || B[i] > (n - son[i]) || A[i] > C[i]) return false;
}
//for (int i = 1; i <= n; ++i) printf("%d %d\n", i, C[i]);
DFS_CHECK(, );
//printf("bug -> %d\n", mid);
//for (int i = 1; i <= n; ++i) printf("%d %d\n", i, C[i]);
for (int i = ; i <= n; ++i)
{
if (A[i] > C[i]) return false;
}
return C[] >= mid;
} inline void Run()
{
int t; scanf("%d", &t);
while (t--)
{
scanf("%d", &n); Init();
for (int i = , u, v; i < n; ++i)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
int tot, u, v;
scanf("%d", &tot);
while (tot--)
{
scanf("%d%d", &u, &v);
A[u] = max(A[u], v);
}
scanf("%d", &tot);
while (tot--)
{
scanf("%d%d", &u, &v);
B[u] = max(B[u], v);
}
DFS_PRE(, );
int l = , r = n, ans = -;
while (r - l >= )
{
int mid = (l + r) >> ;
if (check(mid))
{
ans = mid;
r = mid - ;
}
else
l = mid + ;
}
printf("%d\n", ans);
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run(); return ;
}
 
M - Geometry Problem
题意:给出n个点,求一个圆心以及半径,使得有一半以上的点在这个圆上
思路:随机选三个点,构成外接圆 判断一下 是不是 n <= 4 的时候 特判
 

 #include <bits/stdc++.h>
using namespace std; const double eps = 1e-; inline int sgn(double x)
{
if (fabs(x) < eps) return ;
if (x < ) return -;
return ;
} struct Point
{
double x, y;
inline Point() {}
inline Point(double x, double y) : x(x), y(y) {}
inline void scan() { scanf("%lf%lf", &x, &y); }
inline Point operator + (const Point &b) const { return Point(x + b.x, y + b.y); }
inline Point operator - (const Point &b) const { return Point(x - b.x, y - b.y); }
inline Point operator / (const double &k) const { return Point(x / k, y / k); }
inline Point operator * (const double &k) const { return Point(x * k, y * k); }
inline double operator ^ (const Point &b) const { return x * b.y - y * b.x; }
inline double operator * (const Point &b) const { return x * b.x + y * b.y; }
inline double distance(Point b) { return hypot(x - b.x, y - b.y); }
inline Point rotleft() { return Point(-y, x); }
}; struct Line
{
Point s, e;
inline Line() {}
inline Line(Point s, Point e) : s(s), e(e) {}
inline Point crosspoint(Line v)
{
double a1 = (v.e - v.s) ^ (s - v.s);
double a2 = (v.e - v.s) ^ (e - v.s);
return Point((s.x * a2 - e.x * a1) / (a2 - a1), (s.y * a2 - e.y * a1) / (a2 - a1));
}
inline int relation(Point p)
{
int c = sgn((p - s) ^ (e - s));
if (c < ) return ;
if (c > ) return ;
return ;
}
}; struct Circle
{
Point p;
double r;
inline Circle() {}
inline Circle(Point p, double r) : p(p), r(r) {}
inline Circle(Point a, Point b, Point c)
{
Line u = Line((a + b) / , ((a + b) / ) + ((b - a).rotleft()));
Line v = Line((b + c) / , ((b + c) / ) + ((c - b).rotleft()));
p = u.crosspoint(v);
r = p.distance(a);
}
}; int t, n;
vector <Point> v; inline void Run()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
double x, y; v.clear();
for (int i = ; i <= n; ++i)
{
scanf("%lf%lf", &x, &y);
v.emplace_back(x, y);
}
if (n == )
{
printf("%.6f %.6f 0\n", v[].x, v[].y);
continue;
}
else if (n <= )
{
Point ans = Point((v[].x + v[].x) / , (v[].y + v[].y) / );
double dis = ans.distance(v[]);
printf("%.6f %.6f %.6f\n", ans.x, ans.y, dis);
continue;
}
else
{
Circle cir;
while (true)
{
random_shuffle(v.begin(), v.end());
//if (Line(v[0], v[1]).relation(v[2]) == 3) continue;
cir = Circle(v[], v[], v[]);
int cnt = ;
for (int i = , len = v.size(); i < len; ++i)
if (fabs(cir.p.distance(v[i]) - cir.r) < eps) ++cnt;
if (cnt >= ((n + ) >> ))
break;
}
printf("%.6f %.6f %.6f\n", cir.p.x, cir.p.y, cir.r);
}
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run(); return ;
}

2017中国大学生程序设计竞赛-哈尔滨站 Solution的更多相关文章

  1. HDU6237-A Simple Stone Game-找素因子(欧拉函数)-2017中国大学生程序设计竞赛-哈尔滨站-重现赛

    A Simple Stone Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. HDU6235-Permutation-水题-2017中国大学生程序设计竞赛-哈尔滨站-重现赛

    Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tot ...

  3. HDU 6237.A Simple Stone Game-欧拉函数找素因子 (2017中国大学生程序设计竞赛-哈尔滨站-重现赛)

    A Simple Stone Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  4. HDU 6235.Permutation (2017中国大学生程序设计竞赛-哈尔滨站-重现赛)

    Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tot ...

  5. 2017中国大学生程序设计竞赛-哈尔滨站 H - A Simple Stone Game

    A Simple Stone Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  6. 2017中国大学生程序设计竞赛-哈尔滨站 A - Palindrome

    Palindrome Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tota ...

  7. 【2017中国大学生程序设计竞赛-哈尔滨站】B - K-th Number

    原题: 题意: 给你一个长度为N的正整数组A,对于这个数组的所有子区间,若长度小于k则不管它,若长度大于等于k则取第k大放入数组B 问你B中第M大的数是谁 一眼序列分治,然而没思路 数据结构?能想到从 ...

  8. HDU 6273.Master of GCD-差分数组 (2017中国大学生程序设计竞赛-杭州站-重现赛(感谢浙江理工))

    Super-palindrome 题面地址:http://acm.hdu.edu.cn/downloads/CCPC2018-Hangzhou-ProblemSet.pdf 这道题是差分数组的题目,线 ...

  9. 2017中国大学生程序设计竞赛 - 女生专场 Deleting Edges(思维+最短路)

    Deleting Edges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

随机推荐

  1. shell基础篇(二)-shell变量

    1. 定义变量 1).定义变量时,变量名不加美元符号($),如: var="hello world"2).注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样.同 ...

  2. [转载]会引起全表扫描的几种SQL

    查询语句的时候尽量避免全表扫描,使用全扫描,索引扫描!会引起全表扫描的几种SQL如下 1.模糊查询效率很低: 原因:like本身效率就比较低,应该尽量避免查询条件使用like:对于like ‘%... ...

  3. MinGW和MSYS的自动安装 【转】

    好吧,这是今天写的第二篇文章.我表示这篇才是今天的重头.(伪 半年之前曾经写过一篇关于MinGW和MSYS的手动安装的文章[1],到现在还是全站点击率最高的.(目前这篇文章是最高的.)好吧,侧面反映了 ...

  4. Vitamio视频播放器

    前言 虽然Android已经内置了VideoView组件和MediaPlayer类来支持开发视频播放器,但支持格式.性能等各方面都十分有限,这里与大家一起利用免费的Vitamio来打造属于自己的And ...

  5. discuz x 系列目录结构说明

    api ┄┄┄外部接口  connect ┄┄┄腾讯互联  db ┄┄┄UCenter数据库备份接口  google ┄┄┄Google引擎使用  javascript ┄┄┄数据和广告的 J ...

  6. cocos2dx-3.x物理引擎Box2D介绍

    理引擎 Cocos2d-x引擎内置了两种物理引擎,它们分别是Box2D和Chipmunk,都是非常优秀的2D物理引擎,而且x引擎将它们都内置在SDK中.Box2D使用较为广泛,在这里选择Box2D来进 ...

  7. 微信小程序 this.setData 修改json里面的值

    page({ data:{ s1:{a:"",b:"b"} }, changeData:function(e){ var cData=this.data.s1; ...

  8. nested exception is org.springframework.beans.factory.BeanCreationException: 不能注入对象 创建对象失败 spring

    [出现错误的背景] 在使用Spring+SpringMVC+Mybatis SSM集成框架时,服务器启动就会报错. [错误根源] XML配置错误. [解决方案] 第一步.查找springmvc.xml ...

  9. WIN10 X64下通过TLS实现反调试

    目录(?)[-] TLS技术简介 1 TLS回调函数 2 TLS的数据结构 具体实现及原理 1 VS2015 X64 release下的demo 2 回调函数的具体实现 21 使用IsDebugger ...

  10. JS Date parse

    因为JS中的Date转换格式没有“-”这种间隔符,Date.parse会生成NAN,所以只能进行转换. <script type="text/javascript"> ...