java多线程之CAS原理
前言
在Java并发包中有这样一个包,java.util.concurrent.atomic,该包是对Java部分数据类型的原子封装,在原有数据类型的基础上,提供了原子性的操作方法,保证了线程安全。下面以AtomicInteger为例,来看一下是如何实现的。
public final int incrementAndGet() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}
public final int decrementAndGet() {
for (;;) {
int current = get();
int next = current - 1;
if (compareAndSet(current, next))
return next;
}
}
以这两个方法为例,incrementAndGet方法相当于原子性的++i,decrementAndGet方法相当于原子性的--i,这两个方法中都没有使用阻塞式的方式来保证原子性(如Synchronized),那它们是如何保证原子性的呢,下面引出CAS。
Compare And Swap
CAS 指的是现代 CPU 广泛支持的一种对内存中的共享数据进行操作的一种特殊指令。这个指令会对内存中的共享数据做原子的读写操作。简单介绍一下这个指令的操作过程:首先,CPU 会将内存中将要被更改的数据与期望的值做比较。然后,当这两个值相等时,CPU 才会将内存中的数值替换为新的值。否则便不做操作。最后,CPU 会将旧的数值返回。这一系列的操作是原子的。它们虽然看似复杂,但却是 Java 5 并发机制优于原有锁机制的根本。简单来说,CAS 的含义是“我认为原有的值应该是什么,如果是,则将原有的值更新为新值,否则不做修改,并告诉我原来的值是多少”。(这段描述引自《Java并发编程实践》)
简单的来说,CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则返回V。这是一种乐观锁的思路,它相信在它修改之前,没有其它线程去修改它;而Synchronized是一种悲观锁,它认为在它修改之前,一定会有其它线程去修改它,悲观锁效率很低。
java.util.concurrent包完全建立在CAS之上的,没有CAS就不会有此包。可见CAS的重要性。
非阻塞算法 (nonblocking algorithms)
一个线程的失败或者挂起不应该影响其他线程的失败或挂起的算法。
现代的CPU提供了特殊的指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定。
拿出AtomicInteger来研究在没有锁的情况下是如何做到数据正确性的。
private volatile int value;
首先毫无以为,在没有锁的机制下可能需要借助volatile原语,保证线程间的数据是可见的(共享的)。
这样才获取变量的值的时候才能直接读取。
public final int get() {
return value;
}
然后来看看++i是怎么做到的。
public final int incrementAndGet() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}
在这里采用了CAS操作,每次从内存中读取数据然后将此数据和+1后的结果进行CAS操作,如果成功就返回结果,否则重试直到成功为止。
而compareAndSet利用JNI来完成CPU指令的操作。
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
整体的过程就是这样子的,利用CPU的CAS指令,同时借助JNI来完成Java的非阻塞算法。其它原子操作都是利用类似的特性完成的。
其中
unsafe.compareAndSwapInt(this, valueOffset, expect, update);
类似:
if (this == expect) {
this = update
return true;
} else {
return false;
}
那么问题就来了,成功过程中需要2个步骤:比较this == expect,替换this = update,compareAndSwapInt如何这两个步骤的原子性呢? 参考CAS的原理。
CAS原理
CAS通过调用JNI的代码实现的。JNI:Java Native Interface为JAVA本地调用,允许java调用其他语言。
而compareAndSwapInt就是借助C来调用CPU底层指令实现的。
下面从分析比较常用的CPU(intel x86)来解释CAS的实现原理。
下面是sun.misc.Unsafe类的compareAndSwapInt()方法的源代码:
public final native boolean compareAndSwapInt(Object o, long offset,
int expected,
int x);
可以看到这是个本地方法调用。这个本地方法在openjdk中依次调用的c++代码为:unsafe.cpp,atomic.cpp和atomicwindowsx86.inline.hpp。这个本地方法的最终实现在openjdk的如下位置:openjdk-7-fcs-src-b147-27jun2011\openjdk\hotspot\src\oscpu\windowsx86\vm\ atomicwindowsx86.inline.hpp(对应于windows操作系统,X86处理器)。下面是对应于intel x86处理器的源代码的片段:
// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0 \
__asm je L0 \
__asm _emit 0xF0 \
__asm L0: inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
// alternative for InterlockedCompareExchange
int mp = os::is_MP();
__asm {
mov edx, dest
mov ecx, exchange_value
mov eax, compare_value
LOCK_IF_MP(mp)
cmpxchg dword ptr [edx], ecx
}
}
如上面源代码所示,程序会根据当前处理器的类型来决定是否为cmpxchg指令添加lock前缀。如果程序是在多处理器上运行,就为cmpxchg指令加上lock前缀(lock cmpxchg)。反之,如果程序是在单处理器上运行,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不需要lock前缀提供的内存屏障效果)。
intel的手册对lock前缀的说明如下:
- 确保对内存的读-改-写操作原子执行。在Pentium及Pentium之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其他处理器暂时无法通过总线访问内存。很显然,这会带来昂贵的开销。从Pentium 4,Intel Xeon及P6处理器开始,intel在原有总线锁的基础上做了一个很有意义的优化:如果要访问的内存区域(area of memory)在lock前缀指令执行期间已经在处理器内部的缓存中被锁定(即包含该内存区域的缓存行当前处于独占或以修改状态),并且该内存区域被完全包含在单个缓存行(cache line)中,那么处理器将直接执行该指令。由于在指令执行期间该缓存行会一直被锁定,其它处理器无法读/写该指令要访问的内存区域,因此能保证指令执行的原子性。这个操作过程叫做缓存锁定(cache locking),缓存锁定将大大降低lock前缀指令的执行开销,但是当多处理器之间的竞争程度很高或者指令访问的内存地址未对齐时,仍然会锁住总线。
- 禁止该指令与之前和之后的读和写指令重排序。
- 把写缓冲区中的所有数据刷新到内存中。
备注知识:
关于CPU的锁有如下3种:
3.1 处理器自动保证基本内存操作的原子性
首先处理器会自动保证基本的内存操作的原子性。处理器保证从系统内存当中读取或者写入一个字节是原子的,意思是当一个处理器读取一个字节时,其他处理器不能访问这个字节的内存地址。奔腾6和最新的处理器能自动保证单处理器对同一个缓存行里进行16/32/64位的操作是原子的,但是复杂的内存操作处理器不能自动保证其原子性,比如跨总线宽度,跨多个缓存行,跨页表的访问。但是处理器提供总线锁定和缓存锁定两个机制来保证复杂内存操作的原子性。
3.2 使用总线锁保证原子性
第一个机制是通过总线锁保证原子性。如果多个处理器同时对共享变量进行读改写(i++就是经典的读改写操作)操作,那么共享变量就会被多个处理器同时进行操作,这样读改写操作就不是原子的,操作完之后共享变量的值会和期望的不一致,举个例子:如果i=1,我们进行两次i++操作,我们期望的结果是3,但是有可能结果是2。如下图
原因是有可能多个处理器同时从各自的缓存中读取变量i,分别进行加一操作,然后分别写入系统内存当中。那么想要保证读改写共享变量的操作是原子的,就必须保证CPU1读改写共享变量的时候,CPU2不能操作缓存了该共享变量内存地址的缓存。
处理器使用总线锁就是来解决这个问题的。所谓总线锁就是使用处理器提供的一个LOCK#信号,当一个处理器在总线上输出此信号时,其他处理器的请求将被阻塞住,那么该处理器可以独占使用共享内存。
3.3 使用缓存锁保证原子性
第二个机制是通过缓存锁定保证原子性。在同一时刻我们只需保证对某个内存地址的操作是原子性即可,但总线锁定把CPU和内存之间通信锁住了,这使得锁定期间,其他处理器不能操作其他内存地址的数据,所以总线锁定的开销比较大,最近的处理器在某些场合下使用缓存锁定代替总线锁定来进行优化。
频繁使用的内存会缓存在处理器的L1,L2和L3高速缓存里,那么原子操作就可以直接在处理器内部缓存中进行,并不需要声明总线锁,在奔腾6和最近的处理器中可以使用“缓存锁定”的方式来实现复杂的原子性。所谓“缓存锁定”就是如果缓存在处理器缓存行中内存区域在LOCK操作期间被锁定,当它执行锁操作回写内存时,处理器不在总线上声言LOCK#信号,而是修改内部的内存地址,并允许它的缓存一致性机制来保证操作的原子性,因为缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据,当其他处理器回写已被锁定的缓存行的数据时会起缓存行无效,在例1中,当CPU1修改缓存行中的i时使用缓存锁定,那么CPU2就不能同时缓存了i的缓存行。
但是有两种情况下处理器不会使用缓存锁定。第一种情况是:当操作的数据不能被缓存在处理器内部,或操作的数据跨多个缓存行(cache line),则处理器会调用总线锁定。第二种情况是:有些处理器不支持缓存锁定。对于Inter486和奔腾处理器,就算锁定的内存区域在处理器的缓存行中也会调用总线锁定。
以上两个机制我们可以通过Inter处理器提供了很多LOCK前缀的指令来实现。比如位测试和修改指令BTS,BTR,BTC,交换指令XADD,CMPXCHG和其他一些操作数和逻辑指令,比如ADD(加),OR(或)等,被这些指令操作的内存区域就会加锁,导致其他处理器不能同时访问它。
CAS缺点
CAS虽然很高效的解决原子操作,但是CAS仍然存在三大问题。ABA问题,循环时间长开销大和只能保证一个共享变量的原子操作
1. ABA问题。因为CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么A-B-A 就会变成1A-2B-3A。
从Java1.5开始JDK的atomic包里提供了一个类AtomicStampedReference来解决ABA问题。这个类的compareAndSet方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
关于ABA问题参考文档: http://blog.hesey.net/2011/09/resolve-aba-by-atomicstampedreference.html
CAS的ABA问题
- 进程P1在共享变量中读到值为A
- P1被抢占了,进程P2执行
- P2把共享变量里的值从A改成了B,再改回到A,此时被P1抢占。
- P1回来看到共享变量里的值没有被改变,于是继续执行。
虽然P1以为变量值没有改变,继续执行了,但是这个会引发一些潜在的问题。ABA问题最容易发生在lock free 的算法中的,CAS首当其冲,因为CAS判断的是指针的地址。如果这个地址被重用了呢,问题就很大了。(地址被重用是很经常发生的,一个内存分配后释放了,再分配,很有可能还是原来的地址)
比如上述的DeQueue()函数,因为我们要让head和tail分开,所以我们引入了一个dummy指针给head,当我们做CAS的之前,如果head的那块内存被回收并被重用了,而重用的内存又被EnQueue()进来了,这会有很大的问题。(内存管理中重用内存基本上是一种很常见的行为)
这个例子你可能没有看懂,维基百科上给了一个活生生的例子——
你拿着一个装满钱的手提箱在飞机场,此时过来了一个火辣性感的美女,然后她很暖昧地挑逗着你,并趁你不注意的时候,把用一个一模一样的手提箱和你那装满钱的箱子调了个包,然后就离开了,你看到你的手提箱还在那,于是就提着手提箱去赶飞机去了。
2. 循环时间长开销大。自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。
3. 只能保证一个共享变量的原子操作。当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行CAS操作。
concurrent包的实现
由于java的CAS同时具有 volatile 读和volatile写的内存语义,因此Java线程之间的通信现在有了下面四种方式:
- A线程写volatile变量,随后B线程读这个volatile变量。
- A线程写volatile变量,随后B线程用CAS更新这个volatile变量。
- A线程用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量。
- A线程用CAS更新一个volatile变量,随后B线程读这个volatile变量。
Java的CAS会使用现代处理器上提供的高效机器级别原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器中实现同步的关键(从本质上来说,能够支持原子性读-改-写指令的计算机器,是顺序计算图灵机的异步等价机器,因此任何现代的多处理器都会去支持某种能对内存执行原子性读-改-写操作的原子指令)。同时,volatile变量的读/写和CAS可以实现线程之间的通信。把这些特性整合在一起,就形成了整个concurrent包得以实现的基石。如果我们仔细分析concurrent包的源代码实现,会发现一个通用化的实现模式:
- 首先,声明共享变量为volatile;
- 然后,使用CAS的原子条件更新来实现线程之间的同步;
- 同时,配合以volatile的读/写和CAS所具有的volatile读和写的内存语义来实现线程之间的通信。
AQS,非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中的基础类都是使用这种模式来实现的,而concurrent包中的高层类又是依赖于这些基础类来实现的。从整体来看,concurrent包的实现示意图如下:
java多线程之CAS原理的更多相关文章
- java多线程之CAS
前言 在Java并发包中有这样一个包,java.util.concurrent.atomic,该包是对Java部分数据类型的原子封装,在原有数据类型的基础上,提供了原子性的操作方法,保证了线程安全.下 ...
- JAVA多线程之volatile 与 synchronized 的比较
一,volatile关键字的可见性 要想理解volatile关键字,得先了解下JAVA的内存模型,Java内存模型的抽象示意图如下: 从图中可以看出: ①每个线程都有一个自己的本地内存空间--线程栈空 ...
- Java高性能编程之CAS与ABA及解决方法
Java高性能编程之CAS与ABA及解决方法 前言 如果喜欢暗色调的界面或者想换换界面,可以看看我在个人博客发布的 Java高性能编程之CAS与ABA及解决方法. CAS概念 CAS,全称Compar ...
- Java并发编程之CAS第一篇-什么是CAS
Java并发编程之CAS第一篇-什么是CAS 通过前面几篇的学习,我们对并发编程两个高频知识点了解了其中的一个—volatitl.从这一篇文章开始,我们将要学习另一个知识点—CAS.本篇是<凯哥 ...
- Java并发编程之CAS二源码追根溯源
Java并发编程之CAS二源码追根溯源 在上一篇文章中,我们知道了什么是CAS以及CAS的执行流程,在本篇文章中,我们将跟着源码一步一步的查看CAS最底层实现原理. 本篇是<凯哥(凯哥Java: ...
- Java并发编程之CAS第三篇-CAS的缺点及解决办法
Java并发编程之CAS第三篇-CAS的缺点 通过前两篇的文章介绍,我们知道了CAS是什么以及查看源码了解CAS原理.那么在多线程并发环境中,的缺点是什么呢?这篇文章我们就来讨论讨论 本篇是<凯 ...
- Java多线程之ConcurrentSkipListMap深入分析(转)
Java多线程之ConcurrentSkipListMap深入分析 一.前言 concurrentHashMap与ConcurrentSkipListMap性能测试 在4线程1.6万数据的条件下, ...
- Java并发编程之CAS
CAS(Compare and swap)比较和替换是设计并发算法时用到的一种技术.简单来说,比较和替换是使用一个期望值和一个变量的当前值进行比较,如果当前变量的值与我们期望的值相等,就使用一个新值替 ...
- JAVA多线程之wait/notify
本文主要学习JAVA多线程中的 wait()方法 与 notify()/notifyAll()方法的用法. ①wait() 与 notify/notifyAll 方法必须在同步代码块中使用 ②wait ...
随机推荐
- VS.NET2013发布网站的时候去掉.cs文件(预编译)(转)
在要发布的网站上右键,选择"发布网站". 在发布窗口中,会让你选择一个发布配置文件,没有的话点击下拉菜单在里面选择新建一个. NEXT. 好,现在发布一下网站.发布出来 ...
- PANIC: HOME is defined but could not find Nexus_4_API_22.ini file in $HOME/.android/avd (Note: avd is searched in the order of $ANDROID_AVD_HOME,$ANDROID_SDK_HOME/.android/avd and $HOME/.android/avd)
sudo cp /root/.android/avd/*.ini $Home/.android/avd/ sudo cp -r /root/.android/avd/*.avd $Home/.a ...
- 3110: [Zjoi2013]K大数查询
3110: [Zjoi2013]K大数查询 https://lydsy.com/JudgeOnline/problem.php?id=3110 分析: 整体二分+线段树. 两种操作:区间加入一个数,区 ...
- java 通过内存映射文件来提高IO读取文件性能
MappedByteBuffer out = new RandomAccessFile("src/demo20/test.dat", "rw"). getCha ...
- APP端测试,常见功能测试点汇总
除去每个产品和版本不同的业务需求以及功能,针对于大多数的APP的共同点和移动设备的特性,本文总结了一些APP功能测试中经常遇见,需要考虑到的测试点以共参考 一.安装和卸载 应用的安装和卸载在任何一款A ...
- Linux 安装FastDFS<准备>(使用Mac远程访问)
阅读本文需要一定的Linux基础 一 FastDFS简介 fastdfs是用c语言编写的一款开源分布式文件系统, fastdfs为互联网量身定制, 充分考虑了冗余备份, 负载均衡, 线性扩容等机制, ...
- EasyUI tree 优化--点击文字折叠展开效果
$(function () { $('#tree_menu').tree({ onSelect: function (node) { if (node.state == "closed&qu ...
- Office365创建通讯组
Office365创建通讯组 命令 new-DistributionGroup -Name 'test' -Members tom@msazure.cn 结果 命令 new-DistributionG ...
- Codeforces Round #553 (Div. 2) C
C. Problem for Nazar time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Fulfilling Work: The Shippers More entrepreneurs hire 'fulfillment' outfits to store and ship their products
By Stu Woo June 23, 2011 Brett Teper faced a logistical problem when he and a partner founded ModPro ...